A Comprehensive Survey of Electric Vehicle Charging Demand Forecasting Techniques

被引:2
|
作者
Rashid, Mamunur [1 ]
Elfouly, Tarek [1 ]
Chen, Nan [1 ]
机构
[1] Tennessee Technol Univ, Elect & Comp Engn, Cookeville, TN 38501 USA
关键词
Electric vehicle charging; Demand forecasting; Reviews; Surveys; Probabilistic logic; Predictive models; Charging stations; Electric vehicle (EV); charging demand forecasting; probabilistic model; machine learning; POWER DEMAND; PREDICTION; LOAD; ENERGY; MODEL; BEHAVIOR; NETWORK; OPTIMIZATION; INTEGRATION; MANAGEMENT;
D O I
10.1109/OJVT.2024.3457499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transition of the automotive sector to electric vehicles (EVs) necessitates research on charging demand forecasting for optimal station placement and capacity planning. In the literature, extensive studies have been conducted on model-based and probabilistic EV charging demand forecasting schemes. The studies provide a solid research foundation but result in complicated models with limited scalability. Meanwhile, emerging machine learning techniques bring promising prospects, yet exhibit suboptimal performance with insufficient data. Additionally, existing studies often overlook several critical areas such as overcoming data scarcity, security and privacy concerns, managing the inherent stochasticity of demand data, selecting forecasting methods for a specific feature, and developing standardized performance metrics. Considering the impact of the research topic, EV charging demand forecasting demands careful study. In this paper, we present a comprehensive survey of EV charging demand forecasting, focusing on both probabilistic and learning algorithms. First, we introduce the general procedure of EV charging demand forecasting, encompassing data sources, data pre-processing, and the key EV features. We then provide a taxonomy of existing EV charging demand forecasting techniques, followed by a critical analysis and comparative study of state-of-the-art research. Finally, we discuss open issues, which offer useful insights and future direction for various stakeholders.
引用
收藏
页码:1348 / 1373
页数:26
相关论文
共 50 条
  • [11] Electric vehicle charging demand forecasting model based on big data technologies
    Arias, Mariz B.
    Bae, Sungwoo
    APPLIED ENERGY, 2016, 183 : 327 - 339
  • [12] Electric Vehicle Charging Demand Forecasting Based on City Grid Attribute Classification
    Zhang, Kaiyu
    Tian, Yingjie
    Shi, Shanshan
    Su, Yun
    Xu, Licheng
    Zhang, Meixia
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 592 - 597
  • [13] Determination of Electric Vehicle Charging Demand
    Pekarek, Jan
    INNOVATION MANAGEMENT AND SUSTAINABLE ECONOMIC COMPETITIVE ADVANTAGE: FROM REGIONAL DEVELOPMENT TO GLOBAL GROWTH, VOLS I - VI, 2015, 2015, : 1211 - 1220
  • [14] Electric Vehicle Charging Demand Forecasting Model Based on Data-driven Approach
    Xing Q.
    Chen Z.
    Huang X.
    Zhang Z.
    Leng Z.
    Xu Y.
    Zhao Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40 (12): : 3796 - 3812
  • [15] Travel Motif-Based Learning Scheme for Electric Vehicle Charging Demand Forecasting
    Rashid, Mamunur
    Elfouly, Tarek
    Chen, Nan
    2023 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VPPC, 2023,
  • [16] Demand Forecasting-Based Layout Planning of Electric Vehicle Charging Station Locations
    Li, Min
    Wang, Wuhong
    Mu, Hongfei
    Jiang, Xiaobei
    Ranjitkar, Prakash
    Chen, Tao
    GREEN INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 419 : 1009 - 1021
  • [17] Machine learning-based multivariate forecasting of electric vehicle charging station demand
    Alam, Najmul
    Rahman, M. A.
    Islam, Md. Rashidul
    Hossain, M. J.
    ELECTRONICS LETTERS, 2024, 60 (23)
  • [18] Charging Load Forecasting of Electric Vehicle Based on Charging Frequency
    Wang, H. J.
    Wang, B.
    Fang, C.
    Li, W.
    Huang, H. W.
    4TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2019, 237
  • [19] Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station
    Cao, Tingwei
    Xu, Yinliang
    Liu, Guowei
    Tao, Shengyu
    Tang, Wenjun
    Sun, Hongbin
    APPLIED ENERGY, 2024, 371
  • [20] A comprehensive review on electric vehicles: Charging and control techniques, electric vehicle-grid integration
    Femy P.H.
    Jayakumar J.
    Energy Harvesting and Systems, 2023, 10 (01) : 1 - 14