A Comprehensive Survey of Electric Vehicle Charging Demand Forecasting Techniques

被引:2
|
作者
Rashid, Mamunur [1 ]
Elfouly, Tarek [1 ]
Chen, Nan [1 ]
机构
[1] Tennessee Technol Univ, Elect & Comp Engn, Cookeville, TN 38501 USA
关键词
Electric vehicle charging; Demand forecasting; Reviews; Surveys; Probabilistic logic; Predictive models; Charging stations; Electric vehicle (EV); charging demand forecasting; probabilistic model; machine learning; POWER DEMAND; PREDICTION; LOAD; ENERGY; MODEL; BEHAVIOR; NETWORK; OPTIMIZATION; INTEGRATION; MANAGEMENT;
D O I
10.1109/OJVT.2024.3457499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transition of the automotive sector to electric vehicles (EVs) necessitates research on charging demand forecasting for optimal station placement and capacity planning. In the literature, extensive studies have been conducted on model-based and probabilistic EV charging demand forecasting schemes. The studies provide a solid research foundation but result in complicated models with limited scalability. Meanwhile, emerging machine learning techniques bring promising prospects, yet exhibit suboptimal performance with insufficient data. Additionally, existing studies often overlook several critical areas such as overcoming data scarcity, security and privacy concerns, managing the inherent stochasticity of demand data, selecting forecasting methods for a specific feature, and developing standardized performance metrics. Considering the impact of the research topic, EV charging demand forecasting demands careful study. In this paper, we present a comprehensive survey of EV charging demand forecasting, focusing on both probabilistic and learning algorithms. First, we introduce the general procedure of EV charging demand forecasting, encompassing data sources, data pre-processing, and the key EV features. We then provide a taxonomy of existing EV charging demand forecasting techniques, followed by a critical analysis and comparative study of state-of-the-art research. Finally, we discuss open issues, which offer useful insights and future direction for various stakeholders.
引用
收藏
页码:1348 / 1373
页数:26
相关论文
共 50 条
  • [1] Forecasting Demand of Public Electric Vehicle Charging Infrastructure
    Sears, Justine
    Glitman, Karen
    Roberts, David
    2014 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH), 2014,
  • [2] Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand
    Zheng, Kedi
    Xu, Hanwei
    Long, Zeyang
    Wang, Yi
    Chen, Qixin
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2025, 61 (01) : 1329 - 1340
  • [3] Electric Vehicle Charging Demand Forecasting: Framework and Practical Exemplary Study
    Lin, Wei
    Wei, Heng
    Li, Zhixia
    Nian, Dong
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2024: TRANSPORTATION PLANNING, OPERATIONS, AND TRANSIT, ICTD 2024, 2024, : 324 - 337
  • [4] Electric vehicle charging demand forecasting method based on clustering analysis
    Wang R.
    Gao X.
    Li J.
    Xu J.
    Ai G.
    Jing X.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2020, 48 (16): : 37 - 44
  • [5] Demand forecasting and planning layout of urban electric vehicle charging facilities
    Zhou Y.
    Dai J.
    Yuan H.
    Lu Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (24): : 177 - 187
  • [6] Electric vehicle charging demand forecasting using deep learning model
    Yi, Zhiyan
    Liu, Xiaoyue Cathy
    Wei, Ran
    Chen, Xi
    Dai, Jiangpeng
    Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2022, 26 (06): : 690 - 703
  • [7] Forecasting Electric Vehicle Charging Demand using Support Vector Machines
    Xydas, E. S.
    Marmaras, C. E.
    Cipcigan, L. M.
    Hassan, A. S.
    Jenkins, N.
    2013 48TH INTERNATIONAL UNIVERSITIES' POWER ENGINEERING CONFERENCE (UPEC), 2013,
  • [8] Electric vehicle charging demand forecasting using deep learning model
    Yi, Zhiyan
    Liu, Xiaoyue Cathy
    Wei, Ran
    Chen, Xi
    Dai, Jiangpeng
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 26 (06) : 690 - 703
  • [9] An Improved Optimal Forecasting Algorithm for Comprehensive Electric Vehicle Charging Allocation
    Abbas, Farukh
    Feng, Donghan
    Habib, Salmon
    Rasool, Aazim
    Numan, Muhammad
    ENERGY TECHNOLOGY, 2019, 7 (10)
  • [10] Electric vehicle charging demand forecasting at charging stations under climate influence for electricity dispatching
    Chen, Peilu
    Qin, Jianzhong
    Dong, Jinxi
    Ling, Long
    Lin, Xiaoming
    Ding, Huixian
    IET POWER ELECTRONICS, 2025, 18 (01)