A light CNN based on residual learning and background estimation for hyperspectral anomaly detection

被引:3
|
作者
Zhang, Jiajia [1 ,2 ]
Xiang, Pei [1 ]
Shi, Jin [1 ]
Teng, Xiang [1 ]
Zhao, Dong [3 ]
Zhou, Huixin [1 ]
Li, Huan [1 ]
Song, Jiangluqi [1 ]
机构
[1] Xidian Univ, 2 South Taibai Rd, Xian 710071, Peoples R China
[2] Univ Melbourne, Grattan St, Melbourne 3010, Australia
[3] Wuxi Univ, Wuxi 214105, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral anomaly detection; Residual learning; Non-central convolution; Background estimation; Convolutional Neural Network; COLLABORATIVE REPRESENTATION; LOW-RANK; RX-ALGORITHM;
D O I
10.1016/j.jag.2024.104069
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Existing deep learning-based hyperspectral anomaly detection methods typically perform anomaly detection by reconstructing a clean background. However, for the deep networks, there are many parameters that need to be adjusted. To reduce parameters of network and improve the performance of anomaly detection, a light CNN based on residual learning and background estimation was proposed. Different from traditional methods, the proposed method could directly learn anomaly features rather than background features. First, during the training stage, a background estimation method based on non-central convolution kernels was used to obtain the pseudo-background. Second, to purify the pseudo-background, a pair down-sampling method and a joint loss that combines cross-approximation background loss and consistency loss were proposed. Third, the anomaly matrix was obtained by the difference between the hyperspectral image (HSI) and the pseudo- background. Fourth, a light CNN with three layers was proposed to extract features of the anomaly matrix. Finally, during the prediction stage, anomaly detection results were calculated from the predicted anomaly matrix obtained by light CNN through the Mahalanobis distance. Experiments were conducted with multiple metrics on five real-world datasets. Compared with eight state-of-the-art methods, the proposed method achieved the superior performance in both qualitative and quantitative evaluations.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Hyperspectral anomaly detection based on adaptive background dictionary construction and collaborative representation
    Xu, Mingming
    Zhang, Jinhao
    Liu, Shanwei
    Sheng, Hui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3349 - 3369
  • [42] A KERNEL BACKGROUND PURIFICATION BASED ANOMALY TARGET DETECTION ALGORITHM FOR HYPERSPECTRAL IMAGERY
    Zhang, Yan
    Xu, Mingming
    Fan, Yanguo
    Zhang, Yuxiang
    Dong, Yanni
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 441 - 444
  • [43] Hyperspectral anomaly detection based on variational background inference and generative adversarial network
    Wang, Zhiwei
    Wang, Xue
    Tan, Kun
    Han, Bo
    Ding, Jianwei
    Liu, Zhaoxian
    PATTERN RECOGNITION, 2023, 143
  • [44] Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection
    Yang, Yixin
    Zhang, Jianqi
    Liu, Delian
    Wu, Xin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 213 - 227
  • [45] RSAAE: Residual Self-Attention-Based Autoencoder for Hyperspectral Anomaly Detection
    Wang, Liguo
    Wang, Xiaoyi
    Vizziello, Anna
    Gamba, Paolo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation
    He, Lin
    Pan, Quan
    Di, Wei
    Li, Yuanqing
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1392 - 1403
  • [47] Anomaly-background separation and particle swarm optimization based band selection for hyperspectral anomaly detection
    Shang, Xiaodi
    Duan, Yiqi
    Wang, Xiaopeng
    Fu, Baijia
    Sun, Xudong
    IET IMAGE PROCESSING, 2024, 18 (08) : 2053 - 2063
  • [48] Salient object detection in hyperspectral images using deep background reconstruction based anomaly detection
    Singh, Pangambam Sendash
    Karthikeyan, Subbiah
    REMOTE SENSING LETTERS, 2022, 13 (02) : 184 - 195
  • [49] Hyperspectral Anomaly Detection Based on Machine Learning and Building Selection Graph
    Tang, Yehui
    Qin, Hanlin
    Liang, Ying
    Leng, Hanbing
    Ju, Zezhao
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [50] A joint model based on graph and deep learning for hyperspectral anomaly detection
    Zhang, Lili
    Lin, Fang
    Fu, Baohong
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139