Emergence and transformation of polar skyrmion lattices via flexoelectricity

被引:2
|
作者
Ren, Jianhua [1 ,2 ,3 ]
Liu, Linjie [1 ,2 ,3 ]
Sun, Fei [1 ,2 ,3 ]
He, Qian [1 ,2 ,3 ]
Wu, Mengjun [1 ,2 ,3 ,4 ]
Chen, Weijin [1 ,2 ,3 ,4 ]
Zheng, Yue [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Guangdong Prov Key Lab Magnetoelectr Phys & Device, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[3] Sun Yat Sen Univ, Ctr Phys Mech & Biophys, Sch Phys, Guangzhou 510275, Peoples R China
[4] Sun Yat Sen Univ, Sch Mat, Shenzhen 518107, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
FERROELECTRIC DOMAIN-STRUCTURES; PHASE-TRANSITIONS; METASTABILITY; EVOLUTION; DYNAMICS; PATTERNS;
D O I
10.1038/s41524-024-01398-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As analogies to magnetic skyrmions, polar skyrmions in ferroelectric superlattices and multilayers have garnered widespread attention for their non-trivial topology and novel properties like negative capacitance and nonlinear optical effect. So far, they have only been theoretically predicted to be able to assemble ordered hexagonal skyrmion lattices (SkLs) in ferroelectric thin films. Here, based on phase-field simulations, we report the critical roles of flexoelectricity playing in the stabilization and transformation of polar SkLs. Different polar SkL patterns can emerge in the ferroelectric thin films, including tetragonal-SkL, and hexagonal-SkLs with diverse orientations, as summarized by phase diagrams. These emergent SkL states are attributed to the material anisotropy modified by the flexoelectric effect. Interestingly, we further found that the hexagonal-SkLs can be rotated by applying strain gradient or in-plane electric field to the films. Moreover, a nonreciprocal bending response of tetragonal-SkL is also induced by the flexoelectric effect. Our results provide useful guidelines for the implementation of polar skyrmion lattices in experiments.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Skyrmion Lattices in the BiFeO3 Multiferroic
    Kalinkin, A. N.
    Skorikov, V. M.
    INORGANIC MATERIALS, 2011, 47 (01) : 63 - 67
  • [22] Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices
    Bannenberg, L. J.
    Qian, F.
    Dalgliesh, R. M.
    Martin, N.
    Chaboussant, G.
    Schmidt, M.
    Schlagel, D. L.
    Lograsso, T. A.
    Wilhelm, H.
    Pappas, C.
    PHYSICAL REVIEW B, 2017, 96 (18)
  • [23] Skyrmion and tetarton lattices in twisted bilayer graphene
    Boemerich, Thomas
    Heinen, Lukas
    Rosch, Achim
    PHYSICAL REVIEW B, 2020, 102 (10)
  • [24] Dynamical Defects in Rotating Magnetic Skyrmion Lattices
    Poellath, S.
    Wild, J.
    Heinen, L.
    Meier, T. N. G.
    Kronseder, M.
    Tutsch, L.
    Bauer, A.
    Berger, H.
    Pfleiderer, C.
    Zweck, J.
    Rosch, A.
    Back, C. H.
    PHYSICAL REVIEW LETTERS, 2017, 118 (20)
  • [25] Late stages in the ordering of magnetic skyrmion lattices
    Stidham, James
    Pleimling, Michel
    PHYSICAL REVIEW B, 2020, 102 (14)
  • [26] Structural transitions of skyrmion lattices in synthetic antiferromagnets
    van Walsem, E.
    Duine, R. A.
    Lucassen, J.
    Lavrijsen, R.
    Swagten, H. J. M.
    PHYSICAL REVIEW B, 2019, 100 (06)
  • [27] Transformation of a skyrmionium to a skyrmion through the thermal annihilation of the inner skyrmion
    Jiang, Anjie
    Zhou, Yan
    Zhang, Xichao
    Mochizuki, Masahito
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [28] LOCALLY POLAR LATTICES
    KANTOR, WM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 26 (01) : 90 - 95
  • [29] THERMODYNAMICS OF POLAR LATTICES
    SULLIVAN, DE
    DEUTCH, JM
    STELL, G
    MOLECULAR PHYSICS, 1974, 28 (05) : 1359 - 1371
  • [30] Blowing polar skyrmion bubbles in oxide superlattices
    Hong, Zijian
    Chen, Long-Qing
    ACTA MATERIALIA, 2018, 152 : 155 - 161