Physics-informed and data-driven modeling of an industrial wastewater treatment plant with actual validation

被引:5
|
作者
Koksal, Ece Serenat [1 ,2 ]
Asrav, Tuse [1 ,2 ]
Esenboga, Elif Ecem [3 ]
Cosgun, Ahmet [3 ]
Kusoglu, Gizem [3 ]
Aydin, Erdal [1 ,2 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkiye
[2] Koc Univ, Koc Univ TUPRAS Energy Ctr KUTEM, TR-34450 Istanbul, Turkiye
[3] Turkish Petr Refineries Corp, TR-41790 Korfez, Kocaeli, Turkiye
关键词
Physics-informed neural networks; Wastewater treatment; Dissolved oxygen concentration; Chemical oxygen demand; Data-driven modeling; CHEMICAL OXYGEN-DEMAND; DISSOLVED-OXYGEN; NEURAL-NETWORK; OPTIMIZATION; CONSUMPTION; PREDICTION; OIL;
D O I
10.1016/j.compchemeng.2024.108801
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data-driven modeling is essential in chemical engineering, especially in complex systems like wastewater treatment plants. Recurrent neural networks are effective for modeling parameters in wastewater treatment process such as dissolved oxygen concentration and chemical oxygen demand due to their nonlinear adaptability. However, traditional models face challenges such as the requirement for larger datasets and more frequent sampling, noisy measurements, and overfitting. To address this, physics-informed neural networks integrate physical knowledge for improved performance. In our study, we apply both approaches to a wastewater treatment plant, enhancing prediction performance. Our results demonstrate that physics-informed models perform successfully in offline and online validation, especially when standard methods fail. They maintain effectiveness without frequent updates. Yet, integrating physics-informed knowledge can introduce noise when standard methods suffice. This result points out the need for careful consideration of model choice in different scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Industrial Data-driven Plant Optimization Modeling
    Ohara, Kenichi
    Aoki, Jun
    Kamada, Kenichi
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 569 - 574
  • [42] DATA-DRIVEN DESIGN OF HIGH ELECTRON MOBILITY TRANSISTOR DEVICES USING PHYSICS-INFORMED GAUSSIAN PROCESS MODELING
    Renteria, Anabel
    Xu, Yanwen
    Hamdan, Bayan
    Li, Zhou
    Cordero, Sergio
    Senesky, Debbie
    Wang, Pingfeng
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3B, 2023,
  • [43] Physics-Informed and Data-Driven Prediction of Residual Stress in Three-Dimensional Machining
    J. Schoop
    M.M. Hasan
    H. Zannoun
    Experimental Mechanics, 2022, 62 : 1461 - 1474
  • [44] A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities
    Li, Huiqin
    Zhang, Zhengxin
    Li, Tianmei
    Si, Xiaosheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [45] A Regularized Physics-Informed Neural Network to Support Data-Driven Nonlinear Constrained Optimization
    Perez-Rosero, Diego Armando
    Alvarez-Meza, Andres Marino
    Castellanos-Dominguez, Cesar German
    COMPUTERS, 2024, 13 (07)
  • [46] Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning
    Quintino, Andre Mendes
    da Rocha, Davi Lotfi Lavor Navarro
    Fonseca Junior, Roberto
    Rodriguez, Oscar Mauricio Hernandez
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (03):
  • [47] Data-driven building energy efficiency prediction using physics-informed neural networks
    Michalakopoulos, Vasilis
    Pelekis, Sotiris
    Kormpakis, Giorgos
    Karakolis, Vagelis
    Mouzakitis, Spiros
    Askounis, Dimitris
    2024 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY, SUSTECH, 2024, : 84 - 91
  • [48] A Physics-Informed Training Approach for Data-Driven Method in Remaining Useful Life Estimation
    He, Yuxuan
    Su, Huai
    Zio, Enrico
    Fan, Lin
    Zhang, Jinjun
    2022 6TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY, ICSRS, 2022, : 500 - 504
  • [49] Hybrid data-driven and physics-informed regularized learning of cyclic plasticity with neural networks
    Hildebrand, Stefan
    Klinge, Sandra
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [50] Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm
    Guo, Shenghan
    Agarwal, Mohit
    Cooper, Clayton
    Tian, Qi
    Gao, Robert X.
    Grace, Weihong Guo
    Guo, Y. B.
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 145 - 163