Reinforcement Learning-Based Streaming Process Discovery Under Concept Drift

被引:1
|
作者
Cai, Rujian [1 ]
Zheng, Chao [1 ]
Wang, Jian [1 ]
Li, Duantengchuan [1 ]
Wang, Chong [1 ]
Li, Bing [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Process discovery; Concept drift; Trace stream; Reinforcement learning;
D O I
10.1007/978-3-031-61057-8_4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Streaming process discovery aims to discover a process model that may change over time, coping with the challenges of concept drift in business processes. Existing studies update process models with fixed strategies, neglecting the highly dynamic nature of trace streams. Consequently, they fail to accurately reveal the process evolution caused by concept drift. This paper proposes RLSPD (Reinforcement Learning-based Streaming Process Discovery), a dynamic process discovery approach for constructing an online process model on a trace stream. RLSPD leverages conformance-checking information to characterize trace distribution and employs a reinforcement learning policy to capture fluctuations in the trace stream. Based on the dynamic parameters provided by reinforcement learning, we extract representative trace variants within a memory window using frequency-based sampling and perform concept drift detection. Upon detecting concept drift, the process model is updated by process discovery. Experimental results on real-life event logs demonstrate that our approach effectively adapts to the high dynamics of trace streams, improving the conformance of constructed process models to upcoming traces and reducing erroneous model updates. Additionally, the results highlight the significance of the pre-trained policy in dealing with unknown environments.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 50 条
  • [11] Forgetful Forests: Data Structures for Machine Learning on Streaming Data under Concept Drift
    Yuan, Zhehu
    Sun, Yinqi
    Shasha, Dennis
    ALGORITHMS, 2023, 16 (06)
  • [12] Reinforcement learning-based QoE-oriented dynamic adaptive streaming framework
    Wei, Xuekai
    Zhou, Mingliang
    Kwong, Sam
    Yuan, Hui
    Wang, Shiqi
    Zhu, Guopu
    Cao, Jingchao
    INFORMATION SCIENCES, 2021, 569 : 786 - 803
  • [13] A Deep Reinforcement Learning-Based Optimal Transmission Control Method for Streaming Videos
    Yang, Yawen
    Xiao, Yuxuan
    IEEE ACCESS, 2024, 12 : 53088 - 53098
  • [14] Deep Reinforcement Learning-Based Approach for Video Streaming: Dynamic Adaptive Video Streaming over HTTP
    Souane, Naima
    Bourenane, Malika
    Douga, Yassine
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [15] Evolutionary Reinforcement Learning-based Optimization Method for Ship Concept Schemes
    Sun, Kaiwei
    Yang, Meng
    Wang, Zhicheng
    Zhou, Ta
    2024 INTERNATIONAL CONFERENCE ON ELECTRONIC ENGINEERING AND INFORMATION SYSTEMS, EEISS 2024, 2024, : 47 - 54
  • [16] Incremental Learning of Concept Drift from Streaming Imbalanced Data
    Ditzler, Gregory
    Polikar, Robi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (10) : 2283 - 2301
  • [17] Learning under Concept Drift: A Review
    Lu, Jie
    Liu, Anjin
    Dong, Fan
    Gu, Feng
    Gama, Joao
    Zhang, Guangquan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (12) : 2346 - 2363
  • [18] Learning from streaming data with concept drift and imbalance: an overview
    Hoens, T. Ryan
    Polikar, Robi
    Chawla, Nitesh V.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2012, 1 (01) : 89 - 101
  • [19] Learning from streaming data with concept drift and imbalance: an overview
    T. Ryan Hoens
    Robi Polikar
    Nitesh V. Chawla
    Progress in Artificial Intelligence, 2012, 1 (1) : 89 - 101
  • [20] A practically implementable reinforcement learning-based process controller design
    Hassanpour, Hesam
    Wang, Xiaonian
    Corbett, Brandon
    Mhaskar, Prashant
    AICHE JOURNAL, 2024, 70 (01)