Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions

被引:0
|
作者
Mandal, Sanju [1 ]
Roy, Partha Pratim [1 ]
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Kolkata, West Bengal, India
关键词
Univalent functions; Starlike functions; Convex functions; Hankel determinant; Toeplitz determinant; Logarithmic coefficients; Schwarz functions; Inverse functions;
D O I
10.1007/s40995-024-01717-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hankel and Toeplitz determinants H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} and T2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2)$$\end{document} are defined as: H2,1(Ff-1/2):=Gamma 1 Gamma 3-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma <^>2_{2}$$\end{document} and T2,1(Ff-1/2):=Gamma 12-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2):=\Gamma <^>2_{1}-\Gamma <^>2_{2}$$\end{document}, where Gamma 1,Gamma 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _1, \Gamma _2,$$\end{document} and Gamma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _3$$\end{document} are the first, second and third logarithmic coefficients of inverse functions belonging to the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of normalized univalent functions. In this article, we establish sharp inequalities |H2,1(Ff-1/2)|<= 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)|\le 1/4$$\end{document}, |H2,1(Ff-1/2)|<= 1/36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)| \le 1/36$$\end{document}, |T2,1(Ff-1/2)|<= 5/16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 5/16$$\end{document} and |T2,1(Ff-1/2)|<= 145/2304\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 145/2304$$\end{document} for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants H2,1(Ff/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f}/2)$$\end{document} and H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} of logarithmic coefficients for the classes SS & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}<^>*_S$$\end{document} and KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_S$$\end{document}. Moreover, we exhibit examples showing that the strict inequality in the main results hold.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条