Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions

被引:0
|
作者
Mandal, Sanju [1 ]
Roy, Partha Pratim [1 ]
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Kolkata, West Bengal, India
关键词
Univalent functions; Starlike functions; Convex functions; Hankel determinant; Toeplitz determinant; Logarithmic coefficients; Schwarz functions; Inverse functions;
D O I
10.1007/s40995-024-01717-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hankel and Toeplitz determinants H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} and T2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2)$$\end{document} are defined as: H2,1(Ff-1/2):=Gamma 1 Gamma 3-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma <^>2_{2}$$\end{document} and T2,1(Ff-1/2):=Gamma 12-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2):=\Gamma <^>2_{1}-\Gamma <^>2_{2}$$\end{document}, where Gamma 1,Gamma 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _1, \Gamma _2,$$\end{document} and Gamma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _3$$\end{document} are the first, second and third logarithmic coefficients of inverse functions belonging to the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of normalized univalent functions. In this article, we establish sharp inequalities |H2,1(Ff-1/2)|<= 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)|\le 1/4$$\end{document}, |H2,1(Ff-1/2)|<= 1/36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)| \le 1/36$$\end{document}, |T2,1(Ff-1/2)|<= 5/16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 5/16$$\end{document} and |T2,1(Ff-1/2)|<= 145/2304\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 145/2304$$\end{document} for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants H2,1(Ff/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f}/2)$$\end{document} and H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} of logarithmic coefficients for the classes SS & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}<^>*_S$$\end{document} and KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_S$$\end{document}. Moreover, we exhibit examples showing that the strict inequality in the main results hold.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [1] Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions
    Sanju Mandal
    Molla Basir Ahamed
    Lithuanian Mathematical Journal, 2024, 64 : 67 - 79
  • [2] Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions
    Mandal, Sanju
    Ahamed, Molla Basir
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (01) : 1 - 17
  • [3] On the Second Hankel Determinant of Logarithmic Coefficients for Certain Univalent Functions
    Vasudevarao Allu
    Vibhuti Arora
    Amal Shaji
    Mediterranean Journal of Mathematics, 2023, 20
  • [4] On the Second Hankel Determinant of Logarithmic Coefficients for Certain Univalent Functions
    Allu, Vasudevarao
    Arora, Vibhuti
    Shaji, Amal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [5] Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for the Subclass of Starlike Functions with Respect to Symmetric Conjugate Points
    Wahid, Nur Hazwani Aqilah Abdul
    Tumiran, Adawiyah
    Shaba, Timilehin Gideon
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1818 - 1830
  • [6] ON COEFFICIENTS AND HANKEL DETERMINANTS OF UNIVALENT FUNCTIONS
    POMMERENKE, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (161P): : 111 - +
  • [7] Logarithmic Coefficients of the Inverse of Univalent Functions
    Saminathan Ponnusamy
    Navneet Lal Sharma
    Karl-Joachim Wirths
    Results in Mathematics, 2018, 73
  • [8] Logarithmic Coefficients of the Inverse of Univalent Functions
    Ponnusamy, Saminathan
    Sharma, Navneet Lal
    Wirths, Karl-Joachim
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [9] Hermitian–Toeplitz determinants for certain univalent functions
    Surya Giri
    S. Sivaprasad Kumar
    Analysis and Mathematical Physics, 2023, 13
  • [10] SECOND HANKEL DETERMINANT OF THE LOGARITHMIC COEFFICIENTS FOR A SUBCLASS OF UNIVALENT FUNCTIONS
    Srivastava, Hari mohan
    Eker, Sevtap sumer
    Seker, Bilal
    Cekic, Bilal
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 479 - 488