Time-optimal open-loop set stabilization of Boolean control networks

被引:0
|
作者
Dai, Shaoyu [1 ]
Li, Bowen [2 ]
Lu, Jianquan [3 ,4 ]
机构
[1] Jinling Inst Technol, Dept Math, Nanjing 211169, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[4] Linyi Univ, Sch Automat & Elect Engn, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
Boolean control network; Semi-tensor product; Set stabilization; Open-loop control; Unobservable initial states; OUTPUT TRACKING; CONTROL DESIGN; STABILITY; OBSERVABILITY;
D O I
10.1016/j.neunet.2024.106694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that for stabilization of Boolean control networks (BCNs) with unobservable initial states, open- loop control and close-loop control are not equivalent. An example is given to illustrate the nonequivalence. Enlightened by the nonequivalence, we explore open-loop set stabilization of BCNs with unobservable initial states. More specifically, this issue is to investigate that for a given BCN, whether there exists a unified free control sequence that is effective for all initial states of the system to stabilize the system states to a given set. The criteria for open-loop set stabilization is derived and for any open-loop set stabilizable BCN, every time-optimal open-loop set stabilizer is proposed. Besides, we obtain the least upper bounds of two integers, which are respectively related to the global stabilization and partial stabilization of BCNs in the results of two literature articles. Using the methods in the two literature articles, the least upper bounds of the two integers cannot be obtained.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Open-loop image control
    Jacques-Sermet, Olivier
    PHOTONICS SPECTRA, 2007, 41 (11) : 60 - 62
  • [42] Open-loop control revisited
    Larsen, R
    CONTROL ENGINEERING, 2005, 52 (02) : IM1 - +
  • [43] On open-loop and feedback attainability of a closed set for nonlinear control systems
    Nistri, P
    Quincampoix, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (02) : 474 - 487
  • [44] Optimal Asynchronous Stabilization for Boolean Control Networks With Lebesgue Sampling
    Wang, Liqing
    Wu, Zheng-Guang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 2811 - 2820
  • [45] Open-Loop Control of the Motor
    2018 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2018,
  • [46] OPEN-LOOP NUMERICAL CONTROL
    BATY, GB
    INSTRUMENTS & CONTROL SYSTEMS, 1969, 42 (08): : 89 - &
  • [47] OPEN-LOOP EQUILIBRIUMS FOR A GENERAL CLASS OF TIME-INCONSISTENT STOCHASTIC OPTIMAL CONTROL PROBLEMS
    Alia, Ishak
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, : 149 - 192
  • [48] OPEN-LOOP OPTIMAL CONTROL OF A CLASS OF CONTINUOUS-TIME STOCHASTIC SYSTEMS - SIMULATION STUDY
    TACKER, EC
    LINTON, TD
    SANDERS, CW
    INTERNATIONAL JOURNAL OF CONTROL, 1974, 19 (06) : 1165 - 1175
  • [49] Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks
    Wang, Liqing
    Liu, Yang
    Wu, Zheng-Guang
    Lu, Jianquan
    Yu, Li
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (03): : 1559 - 1566
  • [50] Stabilization of k-valued logical control networks by open-loop control via the reverse-transfer method
    Tian, Hui
    Zhang, Huaguang
    Wang, Zhanshan
    Hou, Yanfang
    AUTOMATICA, 2017, 83 : 387 - 390