Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE

被引:0
|
作者
Gu, Xinyu [1 ,2 ]
Aranganathan, Akashnathan [1 ,3 ]
Tiwary, Pratyush [1 ,2 ,4 ]
机构
[1] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Hlth Comp, Bethesda, MD 20742 USA
[3] Univ Maryland, Biophys Program, College Pk, MD USA
[4] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
来源
ELIFE | 2024年 / 13卷
基金
美国国家卫生研究院;
关键词
artificial intelligence; molecular simulation; AlphaFold; docking; enhanced sampling; Human; ACCURATE DOCKING; GLIDE;
D O I
10.7554/eLife.99702; 10.7554/eLife.99702.3.sa1; 10.7554/eLife.99702.3.sa2; 10.7554/eLife.99702.3.sa3; 10.7554/eLife.99702.3.sa4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Alphafold2 Has More To Learn About Protein Energy Landscapes
    Chakravarty, Devlina
    Schafer, Joseph W.
    Chen, Ethan A.
    Thole, Joseph R.
    Porter, Lauren L.
    PROTEIN SCIENCE, 2024, 33 : 63 - 63
  • [42] Implications of AlphaFold2 for crystallographic phasing by molecular replacement
    McCoy, Airlie J.
    Sammito, Massimo D.
    Read, Randy J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 1 - 13
  • [43] Who Binds Better? Let Alphafold2 Decide!
    Varga, Julia K.
    Schueler-Furman, Ora
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (28)
  • [44] Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel
    Zhorov, Boris S.
    Dong, Ke
    INSECTS, 2022, 13 (08)
  • [45] A structural biology community assessment of AlphaFold2 applications
    Akdel, Mehmet
    Pires, Douglas E., V
    Porta Pardo, Eduard
    Janes, Jurgen
    Zalevsky, Arthur O.
    Meszaros, Balint
    Bryant, Patrick
    Good, Lydia L.
    Laskowski, Roman A.
    Pozzati, Gabriele
    Shenoy, Aditi
    Zhu, Wensi
    Kundrotas, Petras
    Serra, Victoria Ruiz
    Rodrigues, Carlos H. M.
    Dunham, Alistair S.
    Burke, David
    Borkakoti, Neera
    Velankar, Sameer
    Frost, Adam
    Basquin, Jerome
    Lindorff-Larsen, Kresten
    Bateman, Alex
    Kajava, Andrey, V
    Valencia, Alfonso
    Ovchinnikov, Sergey
    Durairaj, Janani
    Ascher, David B.
    Thornton, Janet M.
    Davey, Norman E.
    Stein, Amelie
    Elofsson, Arne
    Croll, Tristan, I
    Beltrao, Pedro
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (11) : 1056 - +
  • [46] AlphaFold2 Model Refinement Using Structure Decoys
    Alshammari, Maytha
    He, Jing
    Wriggers, Willy
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [47] A structural biology community assessment of AlphaFold2 applications
    Mehmet Akdel
    Douglas E. V. Pires
    Eduard Porta Pardo
    Jürgen Jänes
    Arthur O. Zalevsky
    Bálint Mészáros
    Patrick Bryant
    Lydia L. Good
    Roman A. Laskowski
    Gabriele Pozzati
    Aditi Shenoy
    Wensi Zhu
    Petras Kundrotas
    Victoria Ruiz Serra
    Carlos H. M. Rodrigues
    Alistair S. Dunham
    David Burke
    Neera Borkakoti
    Sameer Velankar
    Adam Frost
    Jérôme Basquin
    Kresten Lindorff-Larsen
    Alex Bateman
    Andrey V. Kajava
    Alfonso Valencia
    Sergey Ovchinnikov
    Janani Durairaj
    David B. Ascher
    Janet M. Thornton
    Norman E. Davey
    Amelie Stein
    Arne Elofsson
    Tristan I. Croll
    Pedro Beltrao
    Nature Structural & Molecular Biology, 2022, 29 : 1056 - 1067
  • [48] AlphaFold2带来的三大挑战
    张孝荣
    中国战略新兴产业, 2022, (34) : 89 - 91
  • [49] The structural basis of protein conformational switching revealed by experimental and AlphaFold2 analyses
    Banerjee, Ruma
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (30)
  • [50] Prediction of protein mononucleotide binding sites using AlphaFold2 and machine learning
    Yamaguchi, Shohei
    Nakashima, Haruka
    Moriwaki, Yoshitaka
    Terada, Tohru
    Shimizu, Kentaro
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2022, 100