Propagation of linear and weakly nonlinear waves in Hall-magnetohydrodynamic flows

被引:0
|
作者
Shukla, Triveni P. [1 ]
Sharma, V. D. [2 ]
机构
[1] Natl Inst Technol Warangal, Dept Math, Warangal 506004, Telangana, India
[2] Indian Inst Technol Gandhinagar, Dept Math, Gandhinagar 382355, Gujarat, India
关键词
Hall-magnetohydrodynamics; Asymptotic method; Nonlinear waves; KdV equations; Dispersive shock waves; MODULATED WAVES; SHOCK-WAVES; STATES;
D O I
10.1016/j.ijnonlinmec.2024.104883
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study in this paper linear and weakly nonlinear waves within the framework of a Hall-magnetohydrodynamic model. An optimal ordering, which allows the Hall effect to be seen in the leading order equations, is used to discuss the propagation of such waves; an evolution equation is obtained where the nonlinearity and Hall effect enter through the parameters that influence the wave propagation significantly. The interplay between nonlinearity and Hall effect leads to the emergence of a dispersive shock wave, which appears as the solution to the initial value problem associated with the evolution equation. The present study reveals a number of interesting flow characteristics which are not seen in the theory of ideal magnetohydrodynamics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] On the Propagation of Weakly Nonlinear Random Dispersive Waves
    de Suzzoni, Anne-Sophie
    Tzvetkov, Nikolay
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) : 849 - 874
  • [32] Time-periodic and stationary solutions to the compressible Hall-magnetohydrodynamic system
    Ming Cheng
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [33] On the Propagation of Weakly Nonlinear Random Dispersive Waves
    Anne-Sophie de Suzzoni
    Nikolay Tzvetkov
    Archive for Rational Mechanics and Analysis, 2014, 212 : 849 - 874
  • [34] Decay rates of the compressible Hall-magnetohydrodynamic model for quantum plasmas
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (04)
  • [35] Asymptotic limit of compressible Hall-magnetohydrodynamic model with quantum effects
    Jianlei Li
    Jianwei Yang
    Mengyu Liu
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [36] A free boundary problem for planar compressible Hall-magnetohydrodynamic equations
    Qiang Tao
    Ying Yang
    Jincheng Gao
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [37] Multiscaling in Hall-Magnetohydrodynamic Turbulence: Insights from a Shell Model
    Banerjee, Debarghya
    Ray, Samriddhi Sankar
    Sahoo, Ganapati
    Pandit, Rahul
    PHYSICAL REVIEW LETTERS, 2013, 111 (17)
  • [38] Asymptotic limit of compressible Hall-magnetohydrodynamic model with quantum effects
    Li, Jianlei
    Yang, Jianwei
    Liu, Mengyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [39] A free boundary problem for planar compressible Hall-magnetohydrodynamic equations
    Tao, Qiang
    Yang, Ying
    Gao, Jincheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [40] Zero Mach number limit of the compressible Hall-magnetohydrodynamic equations
    Mu, Yanmin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01): : 1 - 13