The power new XLindley distribution: Statistical inference, fuzzy reliability, and applications

被引:0
|
作者
Gemeay, Ahmed M. [1 ]
Ezzebsa, Abdelali [2 ,3 ]
Zeghdoudi, Halim [2 ]
Tanis, Caner [4 ]
Tashkandy, Yusra A. [5 ]
Bakr, M. E. [5 ]
Kumar, Anoop [6 ]
机构
[1] Tanta Univ, Fac Sci, Dept Math, Tanta 31527, Egypt
[2] Badji Mokhtar Annaba Univ, LaPS Lab, Annaba, Algeria
[3] 8 May 1945 Univ, Guelma, Algeria
[4] Cankiri Karatekin Univ, Dept Stat, Cankiri, Turkiye
[5] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[6] Cent Univ Haryana, Fac Basic Sci, Dept Stat, Mahendergarh 123031, India
关键词
Lindley distribution; Moments; Estimation; Fuzzy; LINDLEY DISTRIBUTION;
D O I
10.1016/j.heliyon.2024.e36594
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces the power new XLindley (PNXL) distribution, a novel two-parameter distribution derived using the power transformation method applied to the XLindley distribution. We thoroughly explore the structural properties of the PNXL distribution, including the rth moment about the origin, moment generating function, survival rate function, distribution function, hazard rate function, skewness, kurtosis, and coefficient of variation. Additionally, we derive the quantile function, fuzzy reliability, reliability measures, stochastic ordering, and actuarial measures for this new distribution. To estimate the parameters of the PNXL distribution, we propose several estimators and evaluate their performance through extensive simulation studies. To demonstrate the applicability and superiority of the PNXL distribution over existing distributions, we fit it to two real datasets and compare its performance with potential competing models. The results highlight the PNXL distribution's effectiveness and potential as a robust tool for modeling and analyzing real-world data.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] STATISTICAL INFERENCE FOR STRESS-STRENGTH RELIABILITY USING INVERSE LOMAX LIFETIME DISTRIBUTION WITH MECHANICAL ENGINEERING APPLICATIONS
    Tolba, Ahlam H.
    Ramadan, Dina A.
    Almetwally, Ehab M.
    Jawa, Taghreed M.
    Sayed-ahmed, Neveen
    THERMAL SCIENCE, 2022, 26 : S303 - S326
  • [32] Statistical Fuzzy Reliability Analysis: An Explanation with Generalized Intuitionistic Fuzzy Lomax Distribution
    Kalam, Abdul
    Cheng, Weihu
    Du, Yang
    Zhao, Xu
    SYMMETRY-BASEL, 2023, 15 (11):
  • [33] Statistical Inference for the Parameter of Rayleigh Distribution Through Fuzzy Membership Function
    Mustafa, Saima
    Naheed, Shumaila
    Basharat, Hina
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (02): : 103 - 109
  • [34] Exponentiated Ailamujia distribution with statistical inference and applications of medical data
    Rather, Aafaq A.
    Subramanian, C.
    Al-Omari, Amer Ibrahim
    Alanzi, Ayed R. A.
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (04) : 907 - 925
  • [35] Statistical Inference of Odd Frechet Inverse Lomax Distribution with Applications
    ZeinEldin, Ramadan A.
    ul Haq, Muhammad Ahsan
    Hashmi, Sharqa
    Elsehety, Mahmoud
    Elgarhy, M.
    COMPLEXITY, 2020, 2020
  • [36] A Proposal for Reliability Evaluation of Components on Electric Power Distribution System Integrating Probabilistic Models and Fuzzy Inference Systems
    Piasson, D.
    Rodrigues, R. B.
    Biscaro, A. A. P.
    Mantovani, J. R. S.
    2012 SIXTH IEEE/PES TRANSMISSION AND DISTRIBUTION: LATIN AMERICA CONFERENCE AND EXPOSITION (T&D-LA), 2012,
  • [37] The discrete new XLindley distribution and the associated autoregressive process
    Maya, R.
    Jodra, P.
    Aswathy, S.
    Irshad, M. R.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [38] Fuzzy Parametric Statistical Inference
    Tang, Wansheng
    Wang, Cheng
    Zhao, Ruiqing
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (01): : 17 - 27
  • [39] Inference on reliability P(Y < X) in a power function distribution
    Ali, M. Masoom
    Woo, Jungsoo
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2005, 8 (03): : 681 - 686
  • [40] Statistical inference about the shape parameter of the exponential power distribution
    Chen, ZM
    STATISTICAL PAPERS, 1999, 40 (04) : 459 - 468