A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction

被引:2
|
作者
Zhou, Bodong [1 ]
Liu, Jiahui [2 ]
Cui, Songyi [3 ]
Zhao, Yaping [2 ]
机构
[1] Shanghai EchoBlend Internet Technol Co Ltd, Tech Consulting Dept, Shanghai 201111, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
[3] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong 999077, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2024年 / 7卷 / 03期
关键词
Deep learning; Recurrent neural networks; Soft sensors; Urban planning; Transportation; Prediction methods; Information processing; spatio-temporal; traffic prediction; multimodal fusion; learning representation; NEURAL-NETWORK; SPEED PREDICTION; ARIMA; FLOW;
D O I
10.26599/BDMA.2024.9020020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic prediction is crucial for urban planning and transportation management, and deep learning techniques have emerged as effective tools for this task. While previous works have made advancements, they often overlook comprehensive analyses of spatio-temporal distributions and the integration of multimodal representations. Our research addresses these limitations by proposing a large-scale spatio-temporal multimodal fusion framework that enables accurate predictions based on location queries and seamlessly integrates various data sources. Specifically, we utilize Convolutional Neural Networks (CNNs) for spatial information processing and a combination of Recurrent Neural Networks (RNNs) for final spatio-temporal traffic prediction. This framework not only effectively reveals its ability to integrate various modal data in the spatio-temporal hyperspace, but has also been successfully implemented in a real-world large-scale map, showcasing its practical importance in tackling urban traffic challenges. The findings presented in this work contribute to the advancement of traffic prediction methods, offering valuable insights for further research and application in addressing real-world transportation challenges.
引用
收藏
页码:621 / 636
页数:16
相关论文
共 50 条
  • [41] Spatio-Temporal Analysis and Prediction of Cellular Traffic in Metropolis
    Wan, Xu
    Zhou, Zimu
    Xiao, Fu
    Xing, Kai
    Yang, Zheng
    Liu, Yunhao
    Peng, Chunyi
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (09) : 2190 - 2202
  • [42] Federated Learning Based Spatio-Temporal Framework for Real-Time Traffic Prediction
    Kaur, Gaganbir
    Grewal, Surender K.
    Jain, Aarti
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 136 (02) : 849 - 865
  • [43] Spatio-Temporal Meta Learning for Urban Traffic Prediction
    Pan, Zheyi
    Zhang, Wentao
    Liang, Yuxuan
    Zhang, Weinan
    Yu, Yong
    Zhang, Junbo
    Zheng, Yu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1462 - 1476
  • [44] Spatio-Temporal Analysis and Prediction of Cellular Traffic in Metropolis
    Wang, Xu
    Zhou, Zimu
    Yang, Zheng
    Liu, Yunhao
    Peng, Chunyi
    2017 IEEE 25TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2017,
  • [45] Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction
    Zhang, Mingyang
    Li, Yong
    Sun, Funing
    Guo, Diansheng
    Hui, Pan
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1475 - 1480
  • [46] Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction
    An, Yang
    Li, Zhibin
    Li, Xiaoyu
    Liu, Wei
    Yang, Xinghao
    Sun, Haoliang
    Chen, Meng
    Zheng, Yu
    Gong, Yongshun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2986 - 3000
  • [47] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [48] A TENSOR BASED FRAMEWORK FOR LARGE SCALE SPATIO-TEMPORAL RASTER DATA PROCESSING
    Bhattacharya, Sukriti
    Braun, Christian
    Leopold, Ulrich
    FOSS4G 2019 - ACADEMIC TRACK, 2019, 42-4 (W14): : 3 - 9
  • [49] Spatio-Temporal Monitoring using Contours in Large-scale Wireless Sensor Networks
    Alasti, Hadi
    Nasipuri, Asis
    2ND ACM INTERNATIONAL WORKSHOP ON FOUNDATIONS OF WIRELESS AD HOC AND SENSOR NETWORKING AND COMPUTING, 2009, : 77 - 85
  • [50] A Spatio-Temporal Hierarchical Model for Crowd Formation Planning in Large-Scale Performance
    Li, Yihao
    Huang, Tianyu
    Liu, Yifan
    Ding, Gangyi
    IEEE ACCESS, 2020, 8 : 116685 - 116694