Towards the application of machine learning in digital twin technology: a multi-scale review

被引:2
|
作者
Nele, Luigi [1 ]
Mattera, Giulio [1 ]
Yap, Emily W. [2 ]
Vozza, Mario [3 ,4 ]
Vespoli, Silvestro [1 ]
机构
[1] Univ Naples Federico II, Dept Chem Mat & Ind Mfg Engn, Naples, Italy
[2] Univ Wollongong, Fac Engn & Informat Sci, Wollongong, NSW 2522, Australia
[3] Polytech Univ Turin, Dept Control & Comp Engn DAUIN, Turin, Italy
[4] CNR, ISMN, DAIMON Lab, Bologna, Italy
关键词
Digital twin; Advanced statistics; Machine learning; Materials; Smart buildings; Manufacturing; CYBER-PHYSICAL SYSTEMS; MANUFACTURING SYSTEM; INDUSTRY; 4.0; REAL-TIME; VISUALIZATION; ARCHITECTURE; RECOGNITION; EXTRACTION;
D O I
10.1007/s42452-024-06206-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This review article delves into the conceptual framework of digital twins and their diverse applications across research domains, highlighting the pivotal role of machine learning in shaping the development and integration of digital twin technology across multiple disciplines. Emphasising key features like multidisciplinarity and multi-scale aspects, the paper explores how data-driven techniques are employed for modelling, visualisation, monitoring, and optimisation within the digital twin framework, pinpointing the benefits introduced in the current state-of-the-art applications, and elucidates persisting challenges across various research fields, including advanced materials, smart buildings, and manufacturing systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Application of Deep Learning in Building Digital Twin-A Review
    Ismail, F. A.
    Shukor, S. A. Abdul
    Rahim, N. A.
    Zakaria, A.
    Adom, A. H.
    Khalid, N. S.
    Wong, R.
    INTELLIGENT MANUFACTURING AND MECHATRONICS, SIMM 2023, 2024, : 837 - 848
  • [22] Current application status of multi-scale simulation and machine learning in research on high-entropy alloys
    Jiang, Deyu
    Xie, Lechun
    Wang, Liqiang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 : 1341 - 1374
  • [23] Smart Production and Manufacturing System Using Digital Twin Technology and Machine Learning
    Yadav R.
    Roopa Y.M.
    Lavanya M.
    Ramesh J.V.N.
    Chitra N.T.
    Babu G.R.
    SN Computer Science, 4 (5)
  • [24] Digital twin-based multi-dimensional and multi-scale modeling of smart manufacturing spaces
    Ding K.
    Zhang X.
    Zhou G.
    Wang C.
    Yang H.
    Zhang F.
    Cao X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2019, 25 (06): : 1491 - 1504
  • [25] Multi-Scale Vehicle Classification Using Different Machine Learning Models
    Roxas, Edison A.
    Vicerra, Ryan Rhay P.
    Lim, Laurence A. Gan
    Dela Cruz, Jennifer C.
    Naguib, Raouf
    Dadios, Elmer P.
    Bandala, Argel A.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [26] Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid
    Stewart, Emma M.
    Top, Philip
    Chertkov, Michael
    Deka, Deepjyoti
    Backhaus, Scott
    Lokhov, Andrey
    Roberts, Ciaran
    Hendrix, Val
    Peisert, Sean
    Florita, Anthony
    King, Thomas J., Jr.
    Reno, Matthew J.
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2017, : 423 - 429
  • [27] A novel multi-scale loss function for classification problems in machine learning
    Berlyand, Leonid
    Creese, Robert
    Jabin, Pierre-Emmanuel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 498
  • [28] Systematic multi-scale decomposition of ocean variability using machine learning
    Franzke, Christian L. E.
    Gugole, Federica
    Juricke, Stephan
    CHAOS, 2022, 32 (07)
  • [29] Machine Learning Coupled Multi-Scale Modeling for Redox Flow Batteries
    Bao, Jie
    Murugesan, Vijayakumar
    Kamp, Carl Justin
    Shao, Yuyan
    Yan, Litao
    Wang, Wei
    ADVANCED THEORY AND SIMULATIONS, 2020, 3 (02)
  • [30] Deep learning for occluded and multi-scale pedestrian detection: A review
    Xiao, Yanqiu
    Zhou, Kun
    Cui, Guangzhen
    Jia, Lianhui
    Fang, Zhanpeng
    Yang, Xianchao
    Xia, Qiongpei
    IET IMAGE PROCESSING, 2021, 15 (02) : 286 - 301