Multi-step carbon emissions forecasting model for industrial process based on a new strategy and machine learning methods

被引:5
|
作者
Hu, Yusha [1 ]
Man, Yi [2 ]
Ren, Jingzheng [1 ]
Zhou, Jianzhao [1 ]
Zeng, Zhiqiang [3 ]
机构
[1] Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Ind & Syst Engn, Hong Kong, Peoples R China
[2] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
[3] Wuyi Univ, Fac Intelligent Mfg, Jiangmen 529020, Peoples R China
关键词
Industrial carbon emissions; Multi-step forecasting; Modeling and simulation; Low-carbon production;
D O I
10.1016/j.psep.2024.05.043
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rising industrial sector capacity increases carbon emissions, necessitating a low-carbon transformation for global sustainability. Accurate multi-step forecasting of industrial carbon emissions is crucial for optimizing production, reducing energy consumption, improving efficiency, and achieving decarbonization. However, current forecasting faces challenges like model uncertainty and low accuracy with multi forecasting steps. To address these issues, this study proposed a multi-step carbon emissions forecasting model for industrial processes. Firstly, a new multi-step forecasting strategy framework was proposed. Secondly, SHapley Additive exPlanations (SHAP) and lagged autocorrelation analysis were used to extract key features affecting industrial carbon emissions. On this basis, the grey model, autoregressive moving average (ARMA) model, and least squares support vector machine (LSSVM) method were used to build forecasting models separately. The weights of the three models were solved using the induced ordered weighted average operator and the Monte Carlo search tree (MCST) method. The final forecasting results were obtained by using the weighted summation method. The data collected from the real industry were used to validate the proposed model. The results showed that the proposed model could accurately forecast industrial carbon emissions within 12 steps and its MAPE is less than 10%. The proposed multi-step industrial carbon emissions forecasting model can provide data support for industrial energy saving, carbon reduction, and green and sustainable development.
引用
收藏
页码:1213 / 1233
页数:21
相关论文
共 50 条
  • [21] Multi-step prediction of carbon emissions based on a secondary decomposition framework coupled with stacking ensemble strategy
    Zhang, Boting
    Ling, Liwen
    Zeng, Liling
    Hu, Huanling
    Zhang, Dabin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (27) : 71063 - 71087
  • [22] Forecasting carbon dioxide emissions in Turkey using machine learning methods
    Kayakus, Mehmet
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2022, 28 (03) : 199 - 210
  • [23] Forecasting carbon emissions future prices using the machine learning methods
    Shahzad, Umer
    Sengupta, Tuhin
    Rao, Amar
    Cui, Lianbiao
    ANNALS OF OPERATIONS RESEARCH, 2024, 337 (SUPPL 1) : 11 - 11
  • [24] Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning
    Galarza-Chavez, Angel A.
    Martinez-Rodriguez, Jose L.
    Dominguez-Cruz, Rene Fernando
    Lopez-Garza, Esmeralda
    Rios-Alvarado, Ana B.
    ENERGY REPORTS, 2025, 13 : 1 - 15
  • [25] Multi-step Time Series Forecasting of Electric Load Using Machine Learning Models
    Masum, Shamsul
    Liu, Ying
    Chiverton, John
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 148 - 159
  • [26] Multi-step forecasting method based on recurrent neural networks model
    Wen, Guangrui
    Qu, Liangsheng
    Zhang, Xining
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2002, 36 (07): : 722 - 725
  • [27] Deep learning model on rates of change for multi-step ahead streamflow forecasting
    Tan, Woon Yang
    Lai, Sai Hin
    Pavitra, Kumar
    Teo, Fang Yenn
    El-Shafie, Ahmed
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1667 - 1689
  • [28] Multi-step probabilistic forecasting model using deep learning parametrized distributions
    Serpell, Cristian
    Valle, Carlos
    Allende, Hector
    SOFT COMPUTING, 2023, 27 (14) : 9479 - 9500
  • [29] Multi-step probabilistic forecasting model using deep learning parametrized distributions
    Cristián Serpell
    Carlos Valle
    Héctor Allende
    Soft Computing, 2023, 27 : 9479 - 9500
  • [30] Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting
    Yang, Kailing
    Zhang, Xi
    Luo, Haojia
    Hou, Xianping
    Lin, Yu
    Wu, Jingyu
    Yu, Liang
    ENERGY, 2024, 298