An automatic procedure for mapping burned areas globally using Sentinel-2 and VIIRS/MODIS active fires in Google Earth Engine

被引:3
|
作者
Bastarrika, Aitor [1 ,2 ]
Rodriguez-Montellano, Armando [3 ]
Roteta, Ekhi [1 ]
Hantson, Stijn [4 ]
Franquesa, Magi [5 ]
Torre, Leyre [1 ]
Gonzalez-Ibarzabal, Jon [1 ,2 ]
Artano, Karmele [1 ]
Martinez-Blanco, Pilar [1 ]
Mesanza, Amaia [1 ,2 ]
Anaya, Jesus A. [6 ]
Chuvieco, Emilio [7 ]
机构
[1] Univ Basque Country, UPV EHU, Sch Engn Vitoria Gasteiz, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, UPV EHU, Built Heritage Res Grp, Vitoria, Spain
[3] Fdn Amigos Nat, Casilla Postal 2241,Km 7 1-2 Doble Via La Guardia, Santa Cruz, Bolivia
[4] Univ Rosario, Fac Nat Sci, Max Planck Tandem Grp Earth Syst Sci, Bogota, Colombia
[5] Consejo Super Invest Cient IPE CSIC, Inst Pirena Ecol, Zaragoza 50059, Spain
[6] Univ Medellin, Environm Engn Program, Medellin, Colombia
[7] Univ Alcala, Dept Geol Geog & Environm, Environm Remote Sensing Res Grp, C Colegios 2, Alcala De Henares 28801, Spain
关键词
Burned Area Mapping; Google Earth Engine; Sentinel-2; Active Fires; TIME-SERIES; ALGORITHM; PRODUCT; IMAGERY; VEGETATION; WILDFIRE; OBIA; TOOL;
D O I
10.1016/j.isprsjprs.2024.08.019
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Understanding the spatial and temporal trends of burned areas (BA) on a global scale offers a comprehensive view of the underlying mechanisms driving fire incidence and its influence on ecosystems and vegetation recovery patterns over extended periods. Such insights are invaluable for modeling fire emissions and the formulation of strategies for post-fire rehabilitation planning. Previous research has provided strong evidence that current global BA products derived from coarse spatial resolution data underestimates global burned areas. Consequently, there is a pressing need for global highresolution BA products. Here, we present an automatic global burned area mapping algorithm (Sentinel2BAM) based on Sentinel-2 Level-2A imagery combined with Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectrometer (MODIS) active fire data. The algorithm employs a Random Forest Model trained by active fires to predict BA probabilities in each 5-day Normalized Burn Ratio (NBR) index-based temporal composites. In a second step, a time-series and object-based analysis of the estimated BA probabilities allows burned areas to be detected on a quarterly basis. The algorithm was implemented in Google Earth Engine (GEE) and applied to 576 Sentinel-2 tiles corresponding to 2019, distributed globally, to assess its ability to map burned areas across different ecosystems. Two validation sources were employed: 21 EMSR Copernicus Emergency Service perimeters obtained using high spatial resolution (<10 m) data (EMSR21) located in the Mediterranean basin and 50 20x20 km global samples selected by stratified sampling with Sentinel-2 at 10 m spatial resolution (GlobalS50). Additionally, 105 Landsat-based long sample units (GlobalL105), were employed to compare the performance of the Sentinel2BAM algorithm against the FIRECCI51 and MCD64A1 global products. Overall accuracy metrics for the Sentinel2BAM algorithm, derived from validation sources highlight higher commission (CE) than omission (OE) errors (CE=10.3 % and OE=7.6 % when using EMSR21 as reference, CE=18.9 % and OE=9.5 % when using Global S50 as reference), while GlobalL105-based inferenced global comparison metrics show similar patterns (CE=22.5 % and OE=13.4 %). Results indicate differences across ecosystems: forest fires in tropical and temperate biomes exhibit higher CE, mainly due to confusion between burned areas and croplands. According to GlobalL105, Sentinel2BAM shows greater accuracy globally (CE=22.5 %, OE=13.4 %) compared to FIRECCI51 (CE=20.8 %, OE=46.5 %) and MCD64A1 (CE=17.5 %, OE=53.1 %), substantially improving the detection of small fires and thereby reducing omission errors. The strengths and weaknesses of the algorithm are thoroughly addressed, demonstrating its potential for global application.
引用
收藏
页码:232 / 245
页数:14
相关论文
共 50 条
  • [1] Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine
    Roteta, Ekhi
    Bastarrika, Aitor
    Franquesa, Magi
    Chuvieco, Emilio
    REMOTE SENSING, 2021, 13 (04) : 1 - 30
  • [2] Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
    Notti, Davide
    Cignetti, Martina
    Godone, Danilo
    Giordan, Daniele
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2023, 23 (07) : 2625 - 2648
  • [3] Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery
    Cissell, Jordan R.
    Canty, Steven W. J.
    Steinberg, Michael K.
    Simpson, Lorae T.
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [4] BADI: A NOVEL BURNED AREA DETECTION INDEX FOR SENTINEL-2 IMAGERY USING GOOGLE EARTH ENGINE PLATFORM
    Farhadi, H.
    Ebadi, H.
    Kiani, A.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 179 - 186
  • [5] Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
    Chen, Zhiheng
    Zhao, Shuhe
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 113
  • [6] An automatic cloud detection model for Sentinel-2 imagery based on Google Earth Engine
    Li, Jianfeng
    Wang, Luyao
    Liu, Siqi
    Peng, Biao
    Ye, Huping
    REMOTE SENSING LETTERS, 2022, 13 (02) : 196 - 206
  • [7] POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS
    Angelino, Cesario Vincenzo
    Cicala, Luca
    Parrilli, Sara
    Fiscante, Nicomino
    Ullo, Silvia Liberata
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6770 - 6773
  • [8] Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine
    Kislik, Chippie
    Dronova, Iryna
    Grantham, Theodore E.
    Kelly, Maggi
    ECOLOGICAL INDICATORS, 2022, 140
  • [9] Mapping Photovoltaic Panels in Coastal China Using Sentinel-1 and Sentinel-2 Images and Google Earth Engine
    Zhang, Haitao
    Tian, Peng
    Zhong, Jie
    Liu, Yongchao
    Li, Jialin
    REMOTE SENSING, 2023, 15 (15)
  • [10] Remotely sensed mapping of the intertidal zone: A Sentinel-2 and Google Earth Engine methodology
    Fitton, James M.
    Rennie, Alistair F.
    Hansom, Jim D.
    Muir, Freya M. E.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 22