Feature Selection with L1 Regularization in Formal Neurons

被引:0
|
作者
Bobrowski, Leon [1 ,2 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Wiejska 45A, Bialystok, Poland
[2] Inst Biocybernet & Biomed Engn, PAS, Warsaw, Poland
关键词
high-dimensional data sets; formal neurons with a margin; feature selection; CPL criterion functions; L-1; regularization;
D O I
10.1007/978-3-031-62495-7_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing classifiers on high-dimensional learning data sets is an important task that appears in artificial intelligence applications. Designing classifiers for high-dimensional data involves learning hierarchical neural networks combined with feature selection. Feature selection aims to omit features that are unnecessary for a given problem. Feature selection in formal meurons can be achieved by minimizing convex and picewise linear (CPL) criterion functions with L-1 regularization. Minimizing CPL criterion functions can be associated with computations on a finite number of vertices in the parameter space.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
  • [41] Impedance inversion based on L1 norm regularization
    Liu, Cai
    Song, Chao
    Lu, Qi
    Liu, Yang
    Feng, Xuan
    Gao, Yue
    JOURNAL OF APPLIED GEOPHYSICS, 2015, 120 : 7 - 13
  • [42] Smoothing L1 regularization for stochastic configuration networks
    Liu J.-J.
    Liu Y.-F.
    Ma Y.-H.
    Fu Y.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (03): : 813 - 818
  • [43] Mathematical programming for simultaneous feature selection and outlier detection under l1 norm
    Barbato, Michele
    Ceselli, Alberto
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 316 (03) : 1070 - 1084
  • [44] Increasing Feature Selection Accuracy for L1 Regularized Linear Models in Large Datasets
    Jaiantilal, Abhishek
    Grudic, Gregory
    PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP ON FEATURE SELECTION IN DATA MINING, 2010, 10 : 86 - 96
  • [45] A novel ensemble L1 regularization based variable selection framework with an application in near infrared spectroscopy
    Zhang Rui
    Chen Yuanyuan
    Wang Zhibin
    Li Kewu
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 163 : 7 - 15
  • [46] Ubiquitous L1 Mosaicism in Hippocampal Neurons
    Upton, Kyle R.
    Gerhardt, Daniel J.
    Jesuadian, J. Samuel
    Richardson, Sandra R.
    Sanchez-Luque, Francisco J.
    Bodea, Gabriela O.
    Ewing, Adam D.
    Salvador-Palomeque, Carmen
    van der Knaap, Marjo S.
    Brennan, Paul M.
    Vanderver, Adeline
    Faulkner, Geoffrey J.
    CELL, 2015, 161 (02) : 228 - 239
  • [47] AN l1 - lp DC REGULARIZATION METHOD FOR COMPRESSED SENSING
    Cao, Wenhe
    Ku, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1889 - 1901
  • [48] l1 Regularization in Two-Layer Neural Networks
    Li, Gen
    Gu, Yuantao
    Ding, Jie
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 135 - 139
  • [49] Iteratively Reweighted l1 Approaches to Sparse Composite Regularization
    Ahmad, Rizwan
    Schniter, Philip
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2015, 1 (04) : 220 - 235
  • [50] Representer Theorems for Sparsity-Promoting l1 Regularization
    Unser, Michael
    Fageot, Julien
    Gupta, Harshit
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) : 5167 - 5180