Enhancing intrusion detection performance using explainable ensemble deep learning

被引:0
|
作者
Ncir, Chiheb Eddine Ben [1 ]
Hajkacem, Mohamed Aymen Ben [2 ]
Alattas, Mohammed [1 ]
机构
[1] Univ Jeddah, Coll Business, MIS Dept, Jeddah, Saudi Arabia
[2] Univ Tunis, ISG Tunis, LARODEC Lab, Tunis, Tunisia
关键词
Intrusion detection; Deep learning; Interpretable machine learning; Explainable machine learning; LSTM-based algorithms; Ensemble learning; NEURAL-NETWORK;
D O I
10.7717/peerj-cs.2289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the exponential growth of available data in large networks, the need for an accurate and explainable intrusion detection system has become of high necessity to effectively discover attacks in such networks. To deal with this challenge, we propose a two-phase Explainable Ensemble deep learning-based method (EED) for intrusion detection. In the first phase, a new ensemble intrusion detection model using three one-dimensional long short-term memory networks (LSTM) is designed for an accurate attack identification. The outputs of three classifiers are aggregated using a meta-learner algorithm resulting in refined and improved results. In the second phase, interpretability and explainability of EED outputs are enhanced by leveraging the capabilities of SHape Additive exPplanations (SHAP). Factors contributing to the identification and classification of attacks are highlighted which allows security experts to understand and interpret the attack behavior and then implement effective response strategies to improve the network security. Experiments conducted on real datasets have shown the effectiveness of EED compared to conventional intrusion detection methods in terms of both accuracy and explainability. The EED method exhibits high accuracy in accurately identifying and classifying attacks while providing transparency and interpretability.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Enhancing intrusion detection: a hybrid machine and deep learning approach
    Sajid, Muhammad
    Malik, Kaleem Razzaq
    Almogren, Ahmad
    Malik, Tauqeer Safdar
    Khan, Ali Haider
    Tanveer, Jawad
    Rehman, Ateeq Ur
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2024, 13 (01):
  • [22] Intrusion Detection in IoT Using Deep Learning
    Banaamah, Alaa Mohammed
    Ahmad, Iftikhar
    SENSORS, 2022, 22 (21)
  • [23] Intrusion Detection for Wireless Sensor Network Using Particle Swarm Optimization Based Explainable Ensemble Machine Learning Approach
    Birahim, Shaikh Afnan
    Paul, Avijit
    Rahman, Fahmida
    Islam, Yamina
    Roy, Tonmoy
    Hasan, Mohammad Asif
    Haque, Fariha
    Chowdhury, Muhammad E. H.
    IEEE ACCESS, 2025, 13 : 13711 - 13730
  • [24] Natural disasters detection using explainable deep learning
    Mustafa, Ahmad M.
    Agha, Rand
    Ghazalat, Lujain
    Sha'ban, Tariq
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 23
  • [25] Glaucoma Detection Using Explainable AI and Deep Learning
    Afreen N.
    Aluvalu R.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [26] Sarcasm detection using deep learning and ensemble learning
    Priya Goel
    Rachna Jain
    Anand Nayyar
    Shruti Singhal
    Muskan Srivastava
    Multimedia Tools and Applications, 2022, 81 : 43229 - 43252
  • [27] Sarcasm detection using deep learning and ensemble learning
    Goel, Priya
    Jain, Rachna
    Nayyar, Anand
    Singhal, Shruti
    Srivastava, Muskan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43229 - 43252
  • [28] Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning based approach
    Sharma, Bhawana
    Sharma, Lokesh
    Lal, Chhagan
    Roy, Satyabrata
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [29] Research on Intrusion Detection Model Using Ensemble learning Methods
    Wang, Ying
    Shen, Yongjun
    Zhang, Guidong
    PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, : 422 - 425
  • [30] Ensemble transfer learning meets explainable AI: A deep learning approach for leaf disease detection
    Raval, Hetarth
    Chaki, Jyotismita
    ECOLOGICAL INFORMATICS, 2024, 84