Interface engineering of polymer composite films for high-temperature capacitive energy storage

被引:8
|
作者
Yu, Xiang [1 ,2 ]
Yang, Rui [1 ]
Zhang, Wenqi [1 ]
Yang, Xiao [1 ,2 ]
Ma, Chuang [1 ]
Sun, Kaixuan [1 ]
Shen, Guangyi [1 ]
Lv, Fangcheng [1 ,2 ]
Fan, Sidi [1 ,2 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
PEI; BNNS; Interface engineering; Fluorination; High-temperature energy storage; THIN-FILMS; BREAKDOWN STRENGTH; BORON-NITRIDE; EXFOLIATION; PERFORMANCE; DIELECTRICS; TRANSITION; NANOSHEETS;
D O I
10.1016/j.cej.2024.154056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer film capacitors encounter challenges in harsh conditions of high temperatures and electric fields because of large conduction loss and degraded breakdown strength (Eb). Herein, an interface engineering strategy is proposed to fluorinate the interfaces between the polyetherimide (PEI) matrix and wide bandgap boron nitride nanosheets (BNNSs) fillers. The composite films exhibit high-performance capacitive energy storage with a remarkable energy density of 5.73 J/cm3 and an ultrahigh efficiency of 91.22 % in conditions of 575 kV/mm and 150 degrees C. By adopting interfacial fluorination, the band structure of BNNSs is tailored to achieve a type II band alignment with PEI, promoting the dual trapping for both electrons and holes. It highly suppresses leakage current and reduces conduction loss. Typically, introducing fillers can compromise the properties of interfacial layers, creating weak points that trigger breakdown. Conversely, fluorinated interfaces exhibit an increased Young's modulus and a reduced dielectric constant. According to the electromechanical breakdown theory, the interfacial Eb is increased. The breakdown phase propagation along the interfaces is thereby impeded, ultimately resulting in a further increase in overall Eb, reaching up to 589 kV/mm at 150 degrees C. Fluorinated interface engineering addresses interfacial challenges posed by fillers, enabling high-temperature energy storage capability in PEI-based capacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Flexible mica films for high-temperature energy storage
    Xu, Xinwei
    Liu, Wenlong
    Li, Yi
    Wang, Yifei
    Yuan, Qibin
    Chen, Jie
    Ma, Rong
    Xiang, Feng
    Wang, Hong
    JOURNAL OF MATERIOMICS, 2018, 4 (03) : 173 - 178
  • [42] Crosslinked PAES-based sandwich-structured polymer nanocomposites with covalently strengthened interface towards high-temperature capacitive energy storage
    Cai, Qiannan
    Zhao, Danying
    Xu, Hai
    Xu, Wenhan
    Yao, Hongyan
    Zhang, Yunhe
    NANOCOMPOSITES, 2023, 9 (01) : 10 - 17
  • [43] High-temperature dielectric polymer composite films of all-organic PVDF/ABS with excellent energy storage performance and stability
    Zhang, Ranran
    Li, Lili
    Long, Shaojun
    Wang, Ping
    Wen, Fei
    Yang, Junzhou
    Wang, Gaofeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (09) : 3480 - 3488
  • [44] Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
    Jiale Ding
    Yao Zhou
    Wenhan Xu
    Fan Yang
    Danying Zhao
    Yunhe Zhang
    Zhenhua Jiang
    Qing Wang
    Nano-Micro Letters, 2024, 16 (03) : 404 - 412
  • [45] Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
    Ding, Jiale
    Zhou, Yao
    Xu, Wenhan
    Yang, Fan
    Zhao, Danying
    Zhang, Yunhe
    Jiang, Zhenhua
    Wang, Qing
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [46] Electrostatic interaction bridges the charge transport kinetics and high-temperature capacitive energy storage performance of polymer dielectrics
    Yang, Minhao
    Zhao, Yanlong
    Yan, Huarui
    Wang, Zepeng
    Xu, Chao
    Zhang, Chong
    Bilotti, Emiliano
    Li, Jianying
    Dang, Zhi-Min
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (20) : 7627 - 7648
  • [47] High-temperature polymer dielectric films with excellent energy storage performance utilizing inorganic outerlayers
    Liu, Xue-Jie
    Cheng, Meng
    Zhang, Yiyi
    Xing, Yunqi
    Dang, Zhi-Min
    Zha, Jun-Wei
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 245
  • [48] A polymer nanocomposite for high-temperature energy storage with thermal stability
    Ge, Pengzu
    Li, Lili
    Jiang, Mengquan
    Wang, Gaofeng
    Wen, Fei
    Gao, Xiaoyi
    CELL REPORTS PHYSICAL SCIENCE, 2025, 6 (01):
  • [49] Optimizing the conjugated structure of aromatic polyurea for high-temperature capacitive energy storage
    Zhao, Zhonghua
    Feng, Yang
    Yang, Liuqing
    Zhang, Shuo
    Liu, Xia
    Zhang, Yan
    Li, Mingru
    Li, Shengtao
    APPLIED PHYSICS LETTERS, 2023, 123 (23)
  • [50] Polyimide composites crosslinked by aromatic molecules for high-temperature capacitive energy storage
    Wang, Feng
    Wang, Hao
    Shi, Xiaoming
    Diao, Chunli
    Li, Chaolong
    Li, Weikun
    Liu, Xu
    Zheng, Haiwu
    Huang, Houbing
    Li, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2024, 485