Interface engineering of polymer composite films for high-temperature capacitive energy storage

被引:8
|
作者
Yu, Xiang [1 ,2 ]
Yang, Rui [1 ]
Zhang, Wenqi [1 ]
Yang, Xiao [1 ,2 ]
Ma, Chuang [1 ]
Sun, Kaixuan [1 ]
Shen, Guangyi [1 ]
Lv, Fangcheng [1 ,2 ]
Fan, Sidi [1 ,2 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
PEI; BNNS; Interface engineering; Fluorination; High-temperature energy storage; THIN-FILMS; BREAKDOWN STRENGTH; BORON-NITRIDE; EXFOLIATION; PERFORMANCE; DIELECTRICS; TRANSITION; NANOSHEETS;
D O I
10.1016/j.cej.2024.154056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer film capacitors encounter challenges in harsh conditions of high temperatures and electric fields because of large conduction loss and degraded breakdown strength (Eb). Herein, an interface engineering strategy is proposed to fluorinate the interfaces between the polyetherimide (PEI) matrix and wide bandgap boron nitride nanosheets (BNNSs) fillers. The composite films exhibit high-performance capacitive energy storage with a remarkable energy density of 5.73 J/cm3 and an ultrahigh efficiency of 91.22 % in conditions of 575 kV/mm and 150 degrees C. By adopting interfacial fluorination, the band structure of BNNSs is tailored to achieve a type II band alignment with PEI, promoting the dual trapping for both electrons and holes. It highly suppresses leakage current and reduces conduction loss. Typically, introducing fillers can compromise the properties of interfacial layers, creating weak points that trigger breakdown. Conversely, fluorinated interfaces exhibit an increased Young's modulus and a reduced dielectric constant. According to the electromechanical breakdown theory, the interfacial Eb is increased. The breakdown phase propagation along the interfaces is thereby impeded, ultimately resulting in a further increase in overall Eb, reaching up to 589 kV/mm at 150 degrees C. Fluorinated interface engineering addresses interfacial challenges posed by fillers, enabling high-temperature energy storage capability in PEI-based capacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Surface Strengthening of Polymer Composite Dielectrics for Superior High-Temperature Capacitive Energy Storage
    Wang, Zepeng
    Zhao, Yanlong
    Yang, Minhao
    Yan, Huarui
    Xu, Chao
    Tian, Bobo
    Zhang, Chong
    Xie, Qing
    Dang, Zhi-Min
    ADVANCED ENERGY MATERIALS, 2025,
  • [2] High-temperature and high-energy-density polymer dielectrics for capacitive energy storage
    Zhou, Yao
    Li, Qi
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [3] High-temperature and high-energy-density polymer dielectrics for capacitive energy storage
    Zhou, Yao
    Li, Qi
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [4] High-temperature polymer dielectrics with superior capacitive energy storage performance
    Qin, Hongmei
    Song, Jinhui
    Liu, Man
    Zhang, Yibo
    Qin, Shiyu
    Chen, Hang
    Shen, Kangdi
    Wang, Shan
    Li, Qi
    Yang, Quanling
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [5] Surface ion-activated polymer composite dielectrics for superior high-temperature capacitive energy storage
    Yang, Minhao
    Zhao, Yanlong
    Wang, Zepeng
    Yan, Huarui
    Liu, Zeren
    Li, Qi
    Dang, Zhi-Min
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (04) : 1592 - 1602
  • [6] Engineering Poly(phthalazinone ether sulfone) Dielectric Films for Stable High-Temperature Capacitive Energy Storage
    Gu, Chengwen
    Sun, Fanchen
    Wang, Qitong
    Li, Jiahui
    Zhao, Yi
    Zhang, Yunhe
    Zhang, Shouhai
    Jian, Xigao
    Weng, Zhihuan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (51) : 22131 - 22140
  • [7] Perspective on interface engineering for capacitive energy storage polymer nanodielectrics
    Xie, Yunchuan
    Fan, Xing
    Li, Xinyi
    Zhang, Ying
    Zhang, Zhicheng
    Huang, Xingyi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (33) : 19624 - 19633
  • [8] Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage
    Ren, Weibin
    Yang, Minzheng
    Zhou, Le
    Fan, Youjun
    He, Shan
    Pan, Jiayu
    Tang, Tongxiang
    Xiao, Yao
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2022, 34 (47)
  • [9] Metallized stacked polymer film capacitors for high-temperature capacitive energy storage
    Ren, Weibin
    Yang, Minzheng
    Guo, Mengfan
    Zhou, Le
    Pan, Jiayu
    Xiao, Yao
    Xu, Erxiang
    Nan, Ce-Wen
    Shen, Yang
    ENERGY STORAGE MATERIALS, 2024, 65
  • [10] Surface-gradient-structured polymer films with restricted thermal expansion for high-temperature capacitive energy storage
    Ran, Zhaoyu
    Yang, Mingcong
    Wang, Rui
    Li, Junluo
    Li, Manxi
    Meng, Li
    Liu, Yuhang
    Hu, Jun
    He, Jinliang
    Li, Qi
    ENERGY STORAGE MATERIALS, 2025, 74