Anomaly-based intrusion detection system using Harris Hawks optimisation with a sigmoid neuron network

被引:0
|
作者
Narengbam, Lenin [1 ]
Dey, Shouvik [1 ]
机构
[1] Natl Inst Technol Nagaland, Dept Comp Sci & Engn, Dimapur 797103, India
关键词
intrusion detection system; IDS; neural network; meta-heuristic optimisation; machine learning; CUCKOO SEARCH ALGORITHM; IDS;
D O I
10.1504/IJICS.2024.140219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces an innovative approach, merging Harris Hawks optimisation (HHO) with a sigmoid neuron network (SN), to enhance anomaly-based intrusion detection systems (ADS) performance. The resultant SN-HHO hybrid model aims to elevate detection rates and lower false positive rates (FPRs) within ADS. Evaluation across five datasets - UNSW-NB15, CIDDS-001, NSL-KDD, AWID3, and CICDDoS2019 - reveals heightened accuracy and faster convergence compared to existing methods. This work underscores the potential synergy of meta-heuristic optimisation and artificial neural networks, offering a promising strategy to fortify IDS performance and reliability, thus presenting a novel direction for advancing anomaly detection practices.
引用
收藏
页码:5 / 27
页数:24
相关论文
共 50 条
  • [31] Anomaly-Based Intrusion Detection System for In-Flight and Network Security in UAV Swarm
    Da Silva, Leandro Marcos
    Ferrao, Isadora Garcia
    Dezan, Catherine
    Espes, David
    Branco, Kalinka R. L. J. C.
    2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023, 2023, : 812 - 819
  • [32] An Application of Membrane Computing to Anomaly-Based Intrusion Detection System
    Idowu, Rufai Kazeem
    Maroosi, Ali
    Muniyandi, Ravie Chandren
    Othman, Zulaiha Ali
    4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS (ICEEI 2013), 2013, 11 : 585 - 592
  • [33] Anomaly-Based Intrusion Detection From Network Flow Features Using Variational Autoencoder
    Zavrak, Sultan
    Iskefiyeli, Murat
    IEEE ACCESS, 2020, 8 : 108346 - 108358
  • [34] Anomaly-based Intrusion Detection using Distributed intelligent systems
    Morel, Benoit
    CRISIS: 2008 THIRD INTERNATIONAL CONFERENCE ON RISKS AND SECURITY OF INTERNET AND SYSTEMS, PROCEEDINGS, 2008, : 37 - 44
  • [35] Anomaly-Based Network Intrusion Detection Using Outlier Subspace Analysis: A Case Study
    Kershaw, David
    Gao, Qigang
    Wang, Hai
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 6657 : 234 - 239
  • [36] Proposals on assessment environments for anomaly-based network intrusion detection systems
    Bermudez-Edo, M.
    Salazar-Hernandez, R.
    Diaz-Verdejo, J.
    Garcia-Teodoro, P.
    CRITICAL INFORMATION INFRASTRUCTURES SECURITY, 2006, 4347 : 210 - +
  • [37] Anomaly-based intrusion detection using fuzzy rough clustering
    Chimphlee, Witcha
    Abdullah, Abdul Hanan
    Sap, Mohd Noor Md
    Srinoy, Surat
    Chimphlee, Siriporn
    2006 International Conference on Hybrid Information Technology, Vol 1, Proceedings, 2006, : 329 - 334
  • [38] Anomaly-based Intrusion Detection in Computer Networks using Wavelets
    Perlin, Tiago
    Nunes, Raul Ceretta
    Kozakevicius, Alice de Jesus
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2011, 3 (01): : 2 - 15
  • [39] Anomaly-based Intrusion Detection Using Auto-encoder
    Nguimbous, Yves Nsoga
    Ksantini, Riadh
    Bouhoula, Adel
    2019 27TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2019, : 505 - 509
  • [40] Profiling Network Traffic Behavior for the purpose of Anomaly-based Intrusion Detection
    Gill, Manmeet Singh
    Lindskog, Dale
    Zavarsky, Pavol
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 885 - 890