On the dynamics of nonlinear Rossby solitary waves via the Ostrovsky hierarchy

被引:1
|
作者
Zhang, Zhihui [1 ]
Zhang, Ruigang [1 ]
Yang, Liangui [1 ]
Liu, Quansheng [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER-EQUATION; FLOW; CONSERVATION; ATMOSPHERE; BLOCKING;
D O I
10.1063/5.0215264
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The impact mechanisms of large-scale atmospheric and ocean dynamics on weather and climate change have long been a focus of attention. In this paper, based on the generalized beta-plane approximation with turbulence dissipation and forcing terms, we derived the Ostrovsky equation describing the evolution of Rossby wave amplitudes using multiscale and perturbation expansion methods. This is the first derivation of the Ostrovsky equation from the quasi-geostrophic potential vorticity conservation equation. A detailed analysis was conducted on the evolution of Rossby waves under the influence of multiple physical factors. We investigated the evolution of flow fields and Rossby wave amplitudes under conditions of weak shear in the background flow and discussed the effects of physical factors such as Rossby parameter beta 0 and turbulence dissipation on the evolution of dipole blocking and Rossby wave amplitudes. The results indicate that an increase in the Rossby parameter slows down the evolution of dipole blocking and amplitudes, while an increase in turbulence dissipation and background flow shear accelerates these evolutions. Additionally, we conducted comparative analyses on the evolution of relative vorticity and perturbed relative vorticity, further enriching the theoretical achievements in atmospheric dynamics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Dynamics of Rossby solitary waves with time-dependent mean flow via Euler eigenvalue model
    Zhang, Zhihui
    Chen, Liguo
    Zhang, Ruigang
    Yang, Liangui
    Liu, Quansheng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2022, 43 (10) : 1615 - 1630
  • [22] Dynamics of Rossby solitary waves with time-dependent mean flow via Euler eigenvalue model
    Zhihui ZHANG
    Liguo CHEN
    Ruigang ZHANG
    Liangui YANG
    Quansheng LIU
    AppliedMathematicsandMechanics(EnglishEdition), 2022, 43 (10) : 1615 - 1630
  • [23] Dynamics of Rossby solitary waves with time-dependent mean flow via Euler eigenvalue model
    Zhihui Zhang
    Liguo Chen
    Ruigang Zhang
    Liangui Yang
    Quansheng Liu
    Applied Mathematics and Mechanics, 2022, 43 : 1615 - 1630
  • [24] Stability of solitary waves of a generalized Ostrovsky equation
    Levandosky, Steve
    Liu, Yue
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) : 985 - 1011
  • [25] Solitary waves and fundamental solution for Ostrovsky equation
    Varlamov, V
    Liu, Y
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (5-6) : 567 - 579
  • [26] TOPOGRAPHIC EFFECTS ON SOLITARY ROSSBY WAVES
    HENROTAY, P
    DYNAMICS OF ATMOSPHERES AND OCEANS, 1981, 6 (01) : 29 - 47
  • [27] Oscillatory Rossby Solitary Waves in the Atmosphere
    陈忠明
    刘富明
    李小平
    陶杰
    Advances in Atmospheric Sciences, 1994, (01) : 65 - 73
  • [28] Solitary Rossby waves with baroclinic modes
    Kizner, Z
    JOURNAL OF MARINE RESEARCH, 1997, 55 (04) : 671 - 685
  • [29] SOLITARY ROSSBY WAVES IN BAROCLINIC ATMOSPHERE
    ROMANOVA, NN
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1980, 16 (07): : 675 - 682
  • [30] SOLITARY WAVES OF THE REGULARIZED SHORT PULSE AND OSTROVSKY EQUATIONS
    Costanzino, Nicola
    Manukian, Vahagn
    Jones, Christopher K. R. T.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) : 2088 - 2106