Boolean Functions with Small Approximate Spectral Norm

被引:0
|
作者
Cheung, Tsun-Ming [1 ]
Hatami, Hamed [1 ]
Zhao, Rosie [1 ]
Zilberstein, Itai [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Theoretical computer science; Boolean analysis; Complexity theory; IDEMPOTENT; THEOREM;
D O I
10.19086/da.122971
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sum of the absolute values of the Fourier coefficients of a function f : F-n(2) -> R is called the spectral norm off. Green and Sanders' quantitative version of Cohen's idempotent theorem states that if the spectral norm off : F-n(2) -> {0,1} is at most M, then the support off belongs to the ring of sets generated by at most l(M) cosets, where l(M) is a constant that only depends on M. We prove that the above statement can be generalized to approximate spectral norms if and only if the support off and its complement satisfy a certain arithmetic connectivity condition. In particular, our theorem provides a new proof of the quantitative Cohen's theorem for F-n(2).
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Algebraic characterizations of small classes of boolean functions
    Gavaldà, R
    Thérien, D
    STACS 2003, PROCEEDINGS, 2003, 2607 : 331 - 342
  • [32] RELIABLE NETWORKS FOR BOOLEAN FUNCTIONS WITH SMALL COMPLEXITY
    UHLIG, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 342 : 366 - 371
  • [34] Approximate spectral functions in thermal field theory
    Henning, PA
    Poliatchenko, E
    Schilling, T
    Bros, J
    PHYSICAL REVIEW D, 1996, 54 (08): : 5239 - 5244
  • [35] Convex spectral functions and approximate intertwining relationships
    Xavier Bonnefond
    Pierre Maréchal
    Optimization Letters, 2014, 8 : 401 - 405
  • [36] Convex spectral functions and approximate intertwining relationships
    Bonnefond, Xavier
    Marechal, Pierre
    OPTIMIZATION LETTERS, 2014, 8 (02) : 401 - 405
  • [37] Monotone Boolean formulas can approximate monotone linear threshold functions
    Servedio, RA
    DISCRETE APPLIED MATHEMATICS, 2004, 142 (1-3) : 181 - 187
  • [38] Optimal spectral-norm approximate minimization of weighted finite automata
    Balle, Borja
    Lacroce, Clara
    Panangaden, Prakash
    Precup, Doina
    Rabusseau, Guillaume
    Leibniz International Proceedings in Informatics, LIPIcs, 2021, 198
  • [39] GOWERS U2 NORM AS A MEASURE OF NONLINEARITY FOR BOOLEAN FUNCTIONS AND THEIR GENERALIZATIONS
    Gangopadhyay, Sugata
    Riera, Constanza
    Stania, Pantelimon
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, 15 (02) : 241 - 256
  • [40] Construction of nonlinear resilient boolean functions using "small" affine functions
    Sarkar, P
    Maitra, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) : 2185 - 2193