Tangningtongluo Tablet ameliorates pancreatic damage in diabetic mice by inducing autophagy and inhibiting the PI3K/Akt/mTOR signaling pathway

被引:0
|
作者
Ren, Ying [1 ]
Hu, Xiangka [2 ]
Qi, Mushuang [1 ]
Zhu, Wanjun [1 ]
Li, Jin [3 ,4 ]
Yang, Shuyu [3 ,4 ]
Dai, Chunmei [2 ]
机构
[1] Jinzhou Med Univ, Coll Basic Med, Jinzhou 121001, Liaoning, Peoples R China
[2] Jinzhou Med Univ, Inst Mat Med, Jinzhou 121001, Liaoning, Peoples R China
[3] Xiamen Univ, Affiliated Hosp 1, Dept Hematol, Xiamen 361003, Fujian, Peoples R China
[4] Xiamen Univ, Sch Med, Xiamen 361005, Fujian, Peoples R China
关键词
Tangningtongluo Tablet; Network pharmacology; PI3K/Akt/mTOR; Autophagy; Diabetes; NETWORK PHARMACOLOGY; BETA-CELLS; APOPTOSIS; POLYSACCHARIDE; RETINOPATHY; STRESS; TARGET; TREND;
D O I
10.1016/j.intimp.2024.113032
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Diabetes is a metabolic disease characterized by hyperglycaemia. Tangningtongluo Tablet (TNTL) is an inpatient formula extensively utilized to treat diabetes mellitus (DM), but the protective mechanism is not clear. This study aimed to investigate the relevant mechanisms by which TNTL affects pancreatic damage in diabetic mice and autophagy. Methods: The impact of TNTL on pancreatic damage in diabetic mice in vitro and in vivo was investigated via glucose and lipid metabolism analyses, HE staining, CCK-8, TUNEL staining, Annexin V/PI, and Western blotting. Molecular docking and Western blotting were used to verify the results of network pharmacological analysis, which was carried out to explore the mechanism by which TNTL affects DM. The autophagosome levels were visualized via RFP-GFP-LC3 and transmission electron microscopy, and lysosomal function was evaluated via Lysotracker red staining. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the expression of the autophagy proteins LC3, p62 and LAMP2. Results: Compared with the model group, TNTL protected pancreas from oxidative stress, decreased the level of MDA, increased the levels of SOD and GSH-px, induced the occurrence of autophagy and decreased the levels of apoptotic factors. Moreover, TNTL inhibited the protein expression of p-PI3K, p-Akt and p-mTOR, increased the levels of LC3 and LAMP2 and decreased the level of p62, and the autophagy inhibitor CQ blocked the protective effect of TNTL on pancreatic damage in diabetic mice. Conclusion: These results demonstrated that TNTL ameliorated pancreatic damage in diabetic mice by inhibiting the PI3K/Akt/mTOR signaling and regulating autophagy.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Columbianadin Ameliorates Myocardial Injury by Inhibiting Autophagy Through the PI3K/Akt/mTOR Signaling Pathway in AMI Mice and Hypoxic H9c2 Cells
    Niu, Zi-Chang
    An, Ran
    Shi, Hui-hui
    Jin, Qi
    Song, Jun-li
    Chang, Yan-xu
    Li, Yu-Hong
    Fu, Shu-fei
    Mao, Hao-ping
    PHYTOTHERAPY RESEARCH, 2025, 39 (01) : 521 - 535
  • [32] Stability Analysis of the PI3K–Akt–mTOR Signaling Pathway
    Sapega T.S.
    Guria G.T.
    Biophysics, 2020, 65 (2) : 259 - 267
  • [33] AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV
    Bhatt, Aadra P.
    Damania, Blossom
    FRONTIERS IN IMMUNOLOGY, 2013, 3
  • [34] Targeting the PI3K/AKT/mTOR Signaling Pathway in Medulloblastoma
    Dimitrova, V.
    Arcaro, A.
    CURRENT MOLECULAR MEDICINE, 2015, 15 (01) : 82 - 93
  • [35] Tenacissoside H repressed the progression of glioblastoma by inhibiting the PI3K/Akt/mTOR signaling pathway
    Dong, Jianhong
    Qian, Yiming
    Zhang, Wei
    Xu, Jiayun
    Wang, Lipei
    Fan, Ziwei
    Jia, Mengxian
    Wei, Lijia
    Yang, Hui
    Luo, Xuan
    Wang, Yongjie
    Jiang, Yuanyuan
    Huang, Zhihui
    Wang, Ying
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 968
  • [36] Honokiol induces autophagy and apoptosis of osteosarcoma through PI3K/Akt/mTOR signaling pathway
    Li, Zhiquan
    Dong, Hui
    Li, Mo
    Wu, Yaoping
    Liu, Yanwu
    Zhao, Yinan
    Chen, Xiaochao
    Ma, Minliang
    MOLECULAR MEDICINE REPORTS, 2018, 17 (02) : 2719 - 2723
  • [37] Aloe-Emodin Ameliorates Renal Fibrosis Via Inhibiting PI3K/Akt/mTOR Signaling Pathway In Vivo and In Vitro
    Dou, Fang
    Liu, YueTong
    Liu, Limin
    Wang, Jingwen
    Sun, Ting
    Mu, Fei
    Guo, Qiyan
    Guo, Chao
    Jia, Na
    Liu, Wenxin
    Ding, Yi
    Wen, Aidong
    REJUVENATION RESEARCH, 2019, 22 (03) : 218 - 229
  • [38] Chrysoeriol alleviated inflammation in infantile pneumonia by inhibiting PI3K/AKT/mTOR signaling pathway
    Wang, Yan
    Hong, Qiuyue
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2022, 21 (07) : 1431 - 1436
  • [39] Jiedu Tongluo Baoshen formula enhances podocyte autophagy and reduces proteinuria in diabetic kidney disease by inhibiting PI3K/Akt/mTOR signaling pathway
    Jin, Di
    Liu, Feng
    Yu, Miao
    Zhao, Yunyun
    Yan, Guanchi
    Xue, Jiaojiao
    Sun, Yuting
    Zhao, Daqing
    Li, Xiangyan
    Qi, Wenxiu
    Wang, Xiuge
    JOURNAL OF ETHNOPHARMACOLOGY, 2022, 293
  • [40] Sivelestat improves acute lung injury by inhibiting PI3K/AKT/mTOR signaling pathway
    Zhou, Yaqing
    Wang, Haiyan
    Liu, Aiming
    Pu, Zunguo
    Ji, Qiuxia
    Xu, Jianhua
    Xu, Yuehua
    Wang, Ying
    PLOS ONE, 2024, 19 (06):