Deep Reinforcement Learning-Based Decision Making for Six Degree of Freedom UCAV Close Range Air Combat

被引:0
|
作者
Zhou, Pan [1 ]
Li, Ni [2 ]
Huang, Jiangtao [2 ]
Zhang, Sheng [2 ]
Zhou, Xiaoyu [2 ]
Liu, Gang [2 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Inst Space Technol, Mianyang, Sichuan, Peoples R China
关键词
Air combat; six-degree-of-freedom modeling; autonomous decision making; situation assessment; deep reinforcement learning;
D O I
10.1007/978-981-97-4010-9_24
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
With the development of computer science, automatic control, aircraft design and other disciplines, artificial intelligence-driven Unmanned Combat Aerial Vehicle (UCAV) air combat decision-making technology has brought revolutionary changes in air combat theory and mode. Aiming at the six-degree-of-freedom UCAV close-range air combat autonomous decision-making problem, this paper proposes aUCAVair combat decision-making method based on the deep reinforcement learning method. Firstly, a close-range air combat environment model based on the six-degree-of-freedom UCAV model is developed. Secondly, an autonomous decision-making model for the UCAV close-range air combat with multi-dimensional continuous state input and multi-dimensional continuous action output is established based on the deep neural network, which receives the combat situation information and outputs the UCAV's joystick displacement commands. Then, a reward function considering the missile attack zone and air combat orientation is designed, which includes the angle reward, the distance reward and the height reward. On this basis, a twin delayed deep deterministic policy gradient algorithm is employed to train the autonomous decision-making model for air combat. Finally, simulation experiments of the UCAV close-range air combat scenario are carried out, and the simulation results show that the proposed intelligent air combat decision-making machine has a win rate 3.57 times higher than that of an expert system, and occupies an average situation reward 1.19 times higher than that of the enemy aircraft.
引用
收藏
页码:320 / 334
页数:15
相关论文
共 50 条
  • [21] Multi-intent autonomous decision-making for air combat with deep reinforcement learning
    Luyu Jia
    Chengtao Cai
    Xingmei Wang
    Zhengkun Ding
    Junzheng Xu
    Kejun Wu
    Jiaqi Liu
    Applied Intelligence, 2023, 53 : 29076 - 29093
  • [22] Multi-intent autonomous decision-making for air combat with deep reinforcement learning
    Jia, Luyu
    Cai, Chengtao
    Wang, Xingmei
    Ding, Zhengkun
    Xu, Junzheng
    Wu, Kejun
    Liu, Jiaqi
    APPLIED INTELLIGENCE, 2023, 53 (23) : 29076 - 29093
  • [23] Deep reinforcement learning for six degree-of-freedom planetary landing
    Gaudet, Brian
    Linares, Richard
    Furfaro, Roberto
    ADVANCES IN SPACE RESEARCH, 2020, 65 (07) : 1723 - 1741
  • [24] Research on Autonomous Maneuvering Decision of UCAV Based on Deep Reinforcement Learning
    Zhang, Yesheng
    Hi, Wei
    Gao, Yang
    Chang, Hongxing
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 230 - 235
  • [25] Decision-making method for air combat maneuver based on explainable reinforcement learning
    Yang, Shuheng
    Zhang, Dong
    Xiong, Wei
    Ren, Zhi
    Tang, Shuo
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45 (18):
  • [26] Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning
    Zuo, Jialiang
    Yang, Rennong
    Zhang, Ying
    Li, Zhonglin
    Wu, Meng
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2017, 38 (10):
  • [27] Deep Reinforcement Learning-based Behaviour Generation Algorithm for Air Combat Escape Intention
    Wang, Xingyu
    Yang, Zhen
    Li, Xiaoyang
    Chai, Shiyuan
    He, Yupeng
    Zhou, Deyun
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024, 2024, : 228 - 233
  • [28] Hierarchical decision algorithm for air combat with hybrid action based on deep reinforcement learning
    Li, Zuolong
    Zhu, Jihong
    Kuang, Minchi
    Zhang, Jie
    Ren, Jie
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45 (17):
  • [29] Close air combat maneuver decision based on deep stochastic game
    Ma W.
    Li H.
    Wang Z.
    Huang Z.
    Wu Z.
    Chen X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (02): : 443 - 451
  • [30] Air Combat Maneuver Decision Method Based on A3C Deep Reinforcement Learning
    Fan, Zihao
    Xu, Yang
    Kang, Yuhang
    Luo, Delin
    MACHINES, 2022, 10 (11)