Numerical solution of multi-dimensional time-fractional diffusion problems using an integral approach

被引:0
|
作者
Nadeem, Muhammad [1 ]
Jabeen, Shamoona [2 ]
Alotaibi, Fawziah M. [3 ]
Alsayaad, Yahya [4 ]
机构
[1] Qujing Normal Univ, Sch Math & Stat, Qujing, Peoples R China
[2] Univ Sci & Technol, Dept Math, Bannu, Kpk, Pakistan
[3] Taif Univ, Turabah Univ Coll, Dept Math, Taif, Saudi Arabia
[4] Hodeidah Univ, Dept Phys, Al Hudaydah, Yemen
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
DIFFERENTIAL-EQUATIONS; APPROXIMATE SOLUTION; ALGORITHM;
D O I
10.1371/journal.pone.0304395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a significant scheme to drive the numerical solution of multi-dimensional diffusion problems where the fractional derivatives are taken in Caputo sense. The Mohand homotopy integral transform scheme (MHITS) is the composition of Mohand integral transform (MIT) and the homotopy perturbation scheme (HPS) which can be used to investigate the numerical solution in the form of convergence series. This approach does not require any presumptions, limitations on elements, or any other hypothesis. The primary objective of this strategy is to perform its direct implementation to the recurrence relation. This method produces results in the form of a convergent series, which accurately predicts the exact results. Graphical results and plot error distribution show an excellent agreement between MHITS results and the exact solution.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Fundamental solution of a multi-dimensional distributed order fractional diffusion equation
    Ansari, Alireza
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):
  • [32] Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrodinger equation
    Wang, Ying
    Wang, Gang
    Bu, Linlin
    Mei, Liquan
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 419 - 451
  • [33] Fundamental Solution of the Multi-Dimensional Time Fractional Telegraph Equation
    Milton Ferreira
    M. Manuela Rodrigues
    Nelson Vieira
    Fractional Calculus and Applied Analysis, 2017, 20 : 868 - 894
  • [34] FUNDAMENTAL SOLUTION OF THE MULTI-DIMENSIONAL TIME FRACTIONAL TELEGRAPH EQUATION
    Ferreira, Milton
    Rodrigues, M. Manuela
    Vieira, Nelson
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (04) : 868 - 894
  • [35] NUMERICAL APPROXIMATION OF STOCHASTIC TIME-FRACTIONAL DIFFUSION
    Jin, Bangti
    Yan, Yubin
    Zhou, Zhi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (04): : 1245 - 1268
  • [36] A numerical technique for solving multi-dimensional fractional optimal control problems
    Ahmed, Hoda F.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2018, 12 (05): : 494 - 505
  • [37] A numerical method for determining a quasi solution of a backward time-fractional diffusion equation
    Shayegan, A. H. Salehi
    Zakeri, A.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (08) : 1130 - 1154
  • [38] The Novel Analytical-Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions
    Lin, Ji
    Reutskiy, Sergiy
    Zhang, Yuhui
    Sun, Yu
    Lu, Jun
    MATHEMATICS, 2023, 11 (04)
  • [39] Numerical Solution of the Time-Fractional Sub-Diffusion Equation on an Unbounded Domain in Two-Dimensional Space
    Li, Hongwei
    Wu, Xiaonan
    Zhang, Jiwei
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 439 - 454
  • [40] Multi-dimensional solutions of space-time-fractional diffusion equations
    Hanyga, A
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2018): : 429 - 450