Numerical solution of multi-dimensional time-fractional diffusion problems using an integral approach

被引:0
|
作者
Nadeem, Muhammad [1 ]
Jabeen, Shamoona [2 ]
Alotaibi, Fawziah M. [3 ]
Alsayaad, Yahya [4 ]
机构
[1] Qujing Normal Univ, Sch Math & Stat, Qujing, Peoples R China
[2] Univ Sci & Technol, Dept Math, Bannu, Kpk, Pakistan
[3] Taif Univ, Turabah Univ Coll, Dept Math, Taif, Saudi Arabia
[4] Hodeidah Univ, Dept Phys, Al Hudaydah, Yemen
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
DIFFERENTIAL-EQUATIONS; APPROXIMATE SOLUTION; ALGORITHM;
D O I
10.1371/journal.pone.0304395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a significant scheme to drive the numerical solution of multi-dimensional diffusion problems where the fractional derivatives are taken in Caputo sense. The Mohand homotopy integral transform scheme (MHITS) is the composition of Mohand integral transform (MIT) and the homotopy perturbation scheme (HPS) which can be used to investigate the numerical solution in the form of convergence series. This approach does not require any presumptions, limitations on elements, or any other hypothesis. The primary objective of this strategy is to perform its direct implementation to the recurrence relation. This method produces results in the form of a convergent series, which accurately predicts the exact results. Graphical results and plot error distribution show an excellent agreement between MHITS results and the exact solution.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative
    Nadeem, Muhammad
    He, Ji-Huan
    Sedighi, Hamid. M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 8190 - 8207
  • [2] Application of Yang homotopy perturbation transform approach for solving multi-dimensional diffusion problems with time-fractional derivatives
    Jinxing Liu
    Muhammad Nadeem
    Loredana Florentina Iambor
    Scientific Reports, 13
  • [3] Application of Yang homotopy perturbation transform approach for solving multi-dimensional diffusion problems with time-fractional derivatives
    Liu, Jinxing
    Nadeem, Muhammad
    Iambor, Loredana Florentina
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    J. Kemppainen
    K. Ruotsalainen
    Integral Equations and Operator Theory, 2009, 64 : 239 - 249
  • [5] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING VOL 2: COMPUTATIONAL METHODS, 2010, : 213 - 222
  • [6] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 64 (02) : 239 - 249
  • [7] A suitable hybrid meshless method for the numerical solution of time-fractional fourth-order reaction–diffusion model in the multi-dimensional case
    Habibirad, Ali
    Hesameddini, Esmail
    Shekari, Younes
    Engineering Analysis with Boundary Elements, 2022, 145 : 149 - 160
  • [8] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [9] Analysis and Numerical Computations of the Multi-Dimensional, Time-Fractional Model of Navier-Stokes Equation with a New Integral Transformation
    Chu, Yuming
    Rashid, Saima
    Kubra, Khadija Tul
    Inc, Mustafa
    Hammouch, Zakia
    Osman, M. S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (03): : 3025 - 3060
  • [10] A suitable hybrid meshless method for the numerical solution of time-fractional fourth-order reaction-diffusion model in the multi-dimensional case
    Habibirad, Ali
    Hesameddini, Esmail
    Shekari, Younes
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 145 : 149 - 160