Piezoelectric-electromagnetic collaborative energy extraction circuit for wearable vibration energy harvester

被引:1
|
作者
Huang, Yuqing [1 ]
Sun, Yanwei [1 ]
Xu, Jubing [1 ]
Hu, Xiangzhan [1 ]
Xia, Yinshui [2 ]
Wang, Xiudeng [3 ]
Xia, Huakang [2 ]
An, Siguang [1 ]
Shi, Ge [1 ]
机构
[1] China Jiliang Univ, Coll Mech & Elect Engn, Hangzhou 310018, Peoples R China
[2] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[3] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative extraction; Piezoelectric energy harvesting; Electromagnetic energy harvesting; Low frequency vibration;
D O I
10.1016/j.mejo.2024.106376
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A piezoelectric-electromagnetic collaborative energy extraction circuit (PEC-EC) is presented in this paper to extract low-frequency vibration energy from arm swinging for wearable devices. This circuit simultaneously harvests energy from both the piezoelectric transducer (PZT) and electromagnetic coil generator (ECG). When the piezoelectric output voltage reaches its peak, the peak detection circuit becomes conductive, and the energy of the piezoelectric material is extracted at this moment. At the same time, the PEC-EC circuit can also harvest electromagnetic energy. Especially, even at low electromagnetic voltage input, the electromagnetic voltage can be extracted through the designed switch. The experimental results show that the circuit starts up only when the input voltage reaches 0.5V. The electromagnetic energy conversion efficiency can reach 53 %, and the piezoelectric energy conversion efficiency can reach 56 %. The effectiveness of collaborative extraction was also verified through experimental validation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Scotch yoke structure inspired piezoelectric-electromagnetic hybrid harvester for wave energy harvesting
    Jia, Shengyao
    Hong, Chunbo
    Shi, Ge
    Han, Jianqiang
    Xu, Ruofan
    Xia, Yinshui
    Xia, Huakang
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2024, 35 (20) : 1540 - 1557
  • [42] Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester
    Edwards, Bryn
    Hu, Patrick A.
    Aw, Kean C.
    SMART MATERIALS AND STRUCTURES, 2016, 25 (05)
  • [43] A vibration-based electromagnetic and piezoelectric hybrid energy harvester
    Khan, Farid Ullah
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6894 - 6916
  • [44] A silicone based piezoelectric and electromagnetic hybrid vibration energy harvester
    Ali, Tashfeen
    Khan, Farid Ullah
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (05)
  • [45] Design and Development of a 2 x 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester
    Han, Bing
    Zhang, Shubin
    Liu, Jianbin
    Jiang, Yanfeng
    MICROMACHINES, 2022, 13 (05)
  • [46] A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester
    Zhu, Yongqiang
    Zhang, Zhaoyang
    Zhang, Pingxia
    Tan, Yurong
    MICROMACHINES, 2022, 13 (05)
  • [47] A metamaterial for wearable piezoelectric energy harvester
    Gao, Shanshi
    Gain, Asit Kumar
    Zhang, Liangchi
    SMART MATERIALS AND STRUCTURES, 2021, 30 (01)
  • [48] A Wearable Piezoelectric Rotational Energy Harvester
    Pillatsch, P.
    Yeatman, E. M.
    Holmes, A. S.
    2013 IEEE INTERNATIONAL CONFERENCE ON BODY SENSOR NETWORKS (BSN), 2013,
  • [49] Nonlinear Electromagnetic Vibration Energy Harvester With Closed Magnetic Circuit
    Sun, Shi
    Dai, Xuhan
    Wang, Kai
    Xiang, Xiaojian
    Ding, Guifu
    Zhao, Xiaolin
    IEEE MAGNETICS LETTERS, 2018, 9
  • [50] Wideband vibration isolation and energy harvesting based on a coupled piezoelectric-electromagnetic structure
    Zhang, Yongqi
    Yang, Tao
    Du, Houfan
    Zhou, Shengxi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 184