Density functional Bogoliubov-de Gennes theory for superconductors implemented in the SIESTA code

被引:1
|
作者
Reho, R. [1 ,2 ]
Wittemeier, N. [3 ]
Kole, A. H. [1 ,2 ]
Ordejon, P. [3 ]
Zanolli, Z. [1 ,2 ,3 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Chem Dept, Condensed Matter & Interfaces, POB 80000, NL-3508 TA Utrecht, Netherlands
[2] Univ Utrecht, ETSF, Condensed Matter & Interfaces, POB 80000, NL-3508 TA Utrecht, Netherlands
[3] Catalan Inst Nanosci & Nanotechnol ICN2, CSIC & BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
关键词
GAP ANISOTROPY; ENERGY-GAP; NEMATICITY; TRANSPORT; SYMMETRY; EQUATIONS; PHASE; FESE;
D O I
10.1103/PhysRevB.110.134505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present SIESTA-BdG, an implementation of the simultaneous solution of the Bogoliubov-de Gennes (BdG) and density functional theory (DFT) problem in SIESTA, a first-principles method and code for material simulations which uses pseudopotentials and a localized basis set. This unified approach describes both conventional and unconventional superconducting states, and enables a description of inhomogeneous superconductors and heterostructures. We demonstrate the validity, accuracy, and efficiency of SIESTA-BdG by computing physically relevant quantities (superconducting charge density, band structure, superconducting gap features, density of states) for conventional singlet (Nb, Pb) and unconventional (FeSe) superconductors. We find excellent agreement with experiments and results obtained within the KKR-BdG computational framework. SIESTA-BdG forms the basis for modeling quantum transport in superconducting devices and including-in an approximate fashion-the superconducting DFT potential of Oliveira, Gross, and Kohn.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Bogoliubov-de Gennes study of trapped spin-imbalanced unitary Fermi gases
    Baksmaty, L. O.
    Lu, Hong
    Bolech, C. J.
    Pu, Han
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [42] Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov-de Gennes random matrices
    Katori, M
    Tanemura, H
    Nagao, T
    Komatsuda, N
    PHYSICAL REVIEW E, 2003, 68 (02): : 1 - 021112
  • [43] Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports
    Xin-Qi Li
    Wei Feng
    Lupei Qin
    Jinshuang Jin
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [44] Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports
    Li, Xin-Qi
    Feng, Wei
    Qin, Lupei
    Jin, Jinshuang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (03)
  • [45] Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports
    Xin-Qi Li
    Wei Feng
    Lupei Qin
    Jinshuang Jin
    Science China(Physics,Mechanics & Astronomy), 2022, (03) : 89 - 95
  • [46] SOLVABLE PAIR POTENTIAL FOR BOGOLIUBOV-DE GENNES EQUATIONS OF SPACE-DEPENDENT SUPERCONDUCTIVITY
    CLINTON, WL
    PHYSICAL REVIEW B, 1973, 8 (05): : 1962 - 1964
  • [47] Real space Bogoliubov-de Gennes equations study of the boson-fermion model
    Krzyszczak, J.
    Domanski, T.
    Wysokinski, K. I.
    ACTA PHYSICA POLONICA A, 2008, 114 (01) : 165 - 169
  • [48] Can the Bogoliubov-de Gennes equation be interpreted as a 'one-particle' wave equation?
    Datta, S
    Bagwell, PF
    SUPERLATTICES AND MICROSTRUCTURES, 1999, 25 (5-6) : 1233 - 1250
  • [49] Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions
    Imura, Ken-Ichiro
    Fukui, Takahiro
    Fujiwara, Takanori
    NUCLEAR PHYSICS B, 2012, 854 (02) : 306 - 320
  • [50] Transparent boundary conditions for the Bogoliubov-de Gennes equation in (1+1)D
    Schwendt, Mathias
    Poetz, Walter
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 229 : 129 - 147