Modification of metals and ligands in two-dimensional conjugated metal-organic frameworks for CO2 electroreduction: A combined density functional theory and machine learning study

被引:3
|
作者
Xing, Guanru [1 ]
Liu, Shize [2 ]
Sun, Guang-Yan [3 ]
Liu, Jing-yao [1 ]
机构
[1] Jilin Univ, Inst Theoret Chem, Coll Chem, Lab Theoret & Computat Chem, Changchun 130023, Peoples R China
[2] Inner Mongolia Univ Technol, Sch Mat Sci & Engn, Hohhot 010051, Peoples R China
[3] Yanbian Univ, Fac Sci, Dept Chem, Jilin 133002, Peoples R China
关键词
2D conjugated metal-organic frameworks; Density functional theory; Machine learning; CO2 reduction reaction; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; CONVERSION; CATALYSTS; APPROXIMATION; FUNDAMENTALS; EVOLUTION;
D O I
10.1016/j.jcis.2024.08.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical carbon dioxide reduction reaction (CO2RR) 2 RR) is a promising technology to establish an artificial carbon cycle. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) with high electrical conductivity have great potential as catalysts. Herein, we designed a range of 2D c-MOFs with different transition metal atoms and organic ligands, TMNxO4-x-HDQ x O 4-x-HDQ (TM = Cr Cu, Mo, Ru Ag, W Au; x = 0, 2, 4; HDQ = hexadipyrazinoquinoxaline), and systematically studied their catalytic performance using density functional theory (DFT). Calculation results indicated that all of TMNxO4-x-HDQ x O 4-x-HDQ structures possess good thermodynamic and electrochemical stability. Notably, among the examined 37 MOFs, 6 catalysts outperformed the Cu(2 1 1) surface in terms of catalytic activity and product selectivity. Specifically, NiN4-HDQ 4-HDQ emerged as an exceptional electrocatalyst for CO production in CO2RR, 2 RR, yielding a remarkable low limiting potential (UL) U L ) of-0.04 V. CuN4- 4- HDQ, NiN2O2-HDQ, 2 O 2-HDQ, and PtN2O2-HDQ 2 O 2-HDQ also exhibited high activity for HCOOH production, with U L values of-0.27,-0.29, and-0.27 V, respectively, while MnN4-HDQ, 4-HDQ, and NiO4-HDQ 4-HDQ mainly produced CH4 4 with U L values of-0.58 and-0.24 V, respectively. Furthermore, these 6 catalysts efficiently suppressed the competitive hydrogen evolution reaction. Machine learning (ML) analysis revealed that the key intrinsic factors influencing CO2RR 2 RR performance of these 2D c-MOFs include electron affinity (EA), E A ), electronegativity (chi), the first ionization energy (Ie), I e ), p-band center of the coordinated N/O atom (epsilon p), epsilon p ), the radius of metal atom (r), r ), and d-band center (epsilon d). epsilon d ). Our findings may provide valuable insights for the exploration of highly active and selective CO2RR 2 RR electrocatalysts.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [21] Understanding the Electron Beam Resilience of Two-Dimensional Conjugated Metal-Organic Frameworks
    Muecke, David
    Cooley, Isabel
    Liang, Baokun
    Wang, Zhiyong
    Park, Sangwook
    Dong, Renhao
    Feng, Xinliang
    Qi, Haoyuan
    Besley, Elena
    Kaiser, Ute
    NANO LETTERS, 2024, 24 (10) : 3014 - 3020
  • [22] Two-dimensional conjugated metal-organic frameworks for electrochemical energy conversion and storage
    Li, Xiao
    Su, Xi
    Su, Tan
    Chen, Long
    Su, Zhongmin
    CHEMICAL SCIENCE, 2025,
  • [23] Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2
    Li, Fang
    Gu, Geun Ho
    Choi, Changhyeok
    Kolla, Praveen
    Hong, Song
    Wu, Tai-Sing
    Soo, Yun-Liang
    Masa, Justus
    Mukerjee, Sanjeev
    Jung, Yousung
    Qiu, Jieshan
    Sun, Zhenyu
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277 (277)
  • [24] Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO2
    Yi, Jun-Dong
    Si, Duan-Hui
    Xie, Ruikuan
    Yin, Qi
    Zhang, Meng-Di
    Wu, Qiao
    Chai, Guo-Liang
    Huang, Yuan-Biao
    Cao, Rong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (31) : 17108 - 17114
  • [25] Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction
    Dae-Hyun Nam
    Bushuyev, Oleksandr S.
    Li, Jun
    De Luna, Phil
    Seifitokaldani, Ali
    Cao-Thang Dinh
    de Arquer, F. Pelayo Garcia
    Wang, Yuhang
    Liang, Zhiqin
    Proppe, Andrew H.
    Tan, Chih Shan
    Todorovic, Petar
    Shekhah, Osama
    Gabardo, Christine M.
    Jo, Jea Woong
    Choi, Jongmin
    Choi, Min-Jae
    Baek, Se-Woong
    Kim, Junghwan
    Sinton, David
    Kelley, Shana O.
    Eddaoudi, Mohamed
    Sargent, Edward H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (36) : 11378 - 11386
  • [26] Two-dimensional metal-organic frameworks for selective separation of CO2/CH4 and CO2/N2
    King, Stephen Charles
    Lin, Rui-Biao
    Wang, Hailong
    Arman, Hadi D.
    Chen, Banglin
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (08) : 1514 - 1519
  • [27] Computational and Machine Learning Methods for CO2 Capture Using Metal-Organic Frameworks
    Mashhadimoslem, Hossein
    Abdol, Mohammad Ali
    Karimi, Peyman
    Zanganeh, Kourosh
    Shafeen, Ahmed
    Elkamel, Ali
    Kamkar, Milad
    ACS NANO, 2024, 18 (35) : 23842 - 23875
  • [28] A density functional theory study of a series of functionalized metal-organic frameworks
    Kim, D
    Lee, TB
    Choi, SB
    Yoon, JH
    Kim, J
    Choi, SH
    CHEMICAL PHYSICS LETTERS, 2006, 420 (1-3) : 256 - 260
  • [29] Recent advances on modification of metal-organic frameworks for CO2 capture
    Xiao, Pianpian
    Zhuo, Chaoyue
    Zhong, Jinrong
    Zhang, Yuefei
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (12): : 6944 - 6956
  • [30] Tunable Charge Transport and Spin Dynamics in Two-Dimensional Conjugated Metal-Organic Frameworks
    Lu, Yang
    Hu, Ziqi
    Petkov, Petko
    Fu, Shuai
    Qi, Haoyuan
    Huang, Chuanhui
    Liu, Yannan
    Huang, Xing
    Wang, Mingchao
    Zhang, Peng
    Kaiser, Ute
    Bonn, Mischa
    Wang, Hai I.
    Samori, Paolo
    Coronado, Eugenio
    Dong, Renhao
    Feng, Xinliang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (04) : 2574 - 2582