Triggering dark showers with conditional dual auto-encoders

被引:0
|
作者
Anzalone, Luca [1 ,3 ]
Chhibra, Simranjit Singh [1 ,2 ,5 ]
Maier, Benedikt [2 ,4 ]
Chernyavskaya, Nadezda [2 ]
Pierini, Maurizio [2 ]
机构
[1] Univ Bologna, Dept Phys & Astron DIFA, Bologna, Italy
[2] European Org Nucl Res CERN, Geneva, Switzerland
[3] Ist Nazl Fis Nucl INFN, Bologna, Italy
[4] Karlsruhe Inst Technol KIT, Karlsruhe, Germany
[5] Queen Mary Univ London QMUL, London, England
来源
关键词
anomaly detection; auto-encoders; deep learning; dark showers; high-energy physics;
D O I
10.1088/2632-2153/ad652b
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a family of conditional dual auto-encoders (CoDAEs) for generic and model-independent new physics searches at colliders. New physics signals, which arise from new types of particles and interactions, are considered in our study as anomalies causing deviations in data with respect to expected background events. In this work, we perform a normal-only anomaly detection, which employs only background samples, to search for manifestations of a dark version of strong force applying (variational) auto-encoders on raw detector images, which are large and highly sparse, without leveraging any physics-based pre-processing or strong assumption on the signals. The proposed CoDAE has a dual-encoder design, which is general and can learn an auxiliary yet compact latent space through spatial conditioning, showing a neat improvement over competitive physics-based baselines and related approaches, therefore also reducing the gap with fully supervised models. It is the first time an unsupervised model is shown to exhibit excellent discrimination against multiple dark shower models, illustrating the suitability of this method as an accurate, fast, model-independent algorithm to deploy, e.g. in the real-time event triggering systems of large hadron collider experiments such as ATLAS and CMS.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Self-Supervised Variational Auto-Encoders
    Gatopoulos, Ioannis
    Tomczak, Jakub M.
    ENTROPY, 2021, 23 (06)
  • [32] Genomic data imputation with variational auto-encoders
    Qiu, Yeping Lina
    Zheng, Hong
    Gevaert, Olivier
    GIGASCIENCE, 2020, 9 (08):
  • [33] InvMap and Witness Simplicial Variational Auto-Encoders
    Medbouhi, Aniss Aiman
    Polianskii, Vladislav
    Varava, Anastasia
    Kragic, Danica
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 199 - 236
  • [34] UNDERSTANDING LINEAR STYLE TRANSFER AUTO-ENCODERS
    Pradhan, Ian
    Lyu, Siwei
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [35] Graph Auto-Encoders for Learning Edge Representations
    Rennard, Virgile
    Nikolentzos, Giannis
    Vazirgiannis, Michalis
    COMPLEX NETWORKS & THEIR APPLICATIONS IX, VOL 2, COMPLEX NETWORKS 2020, 2021, 944 : 117 - 129
  • [36] Robust and Unsupervised KPI Anomaly Detection Based on Highly Sensitive Conditional Variational Auto-Encoders
    Yan, Shili
    Tang, Bing
    Yang, Qing
    He, Yijia
    Zhang, Xiaoyuan
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 597 - 604
  • [37] Graph Regularized Auto-Encoders for Image Representation
    Liao, Yiyi
    Wang, Yue
    Liu, Yong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (06) : 2839 - 2852
  • [38] Smile Recognition Based on Deep Auto-Encoders
    Liang, Shufen
    Liang, Xiangqun
    Guo, Min
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 176 - 181
  • [39] LMAE: A large margin Auto-Encoders for classification
    Liu, Weifeng
    Ma, Tengzhou
    Xie, Qiangsheng
    Tao, Dapeng
    Cheng, Jun
    SIGNAL PROCESSING, 2017, 141 : 137 - 143
  • [40] Fault detection Neural Differential Auto-encoders
    Goswami, Umang
    Kodamana, Hariprasad
    Ramteke, Manojkumar
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 189