An approach to generalized (η1,η2)-convex functions via local fractional calculus and some applications

被引:0
|
作者
Sanabria, Jose E. [1 ]
Ramos-Fernandez, Julio C. [2 ]
Sanchez, C. Rainier V. [3 ]
机构
[1] Univ Sucre Sincelejo, Fac Educ & Ciencias, Dept Matemat, Sincelejo, Colombia
[2] Univ Distrital Francisco Jose Caldas Bogota, Fac Ciencias Matemat & Nat, Bogota, Colombia
[3] Inst Super Formac Docente Salome Urena, Recinto Luis Napoleon Nunez Molina Licey Medio, Santiago, Dominican Rep
关键词
(eta(1); eta(2))-convex function; fractal set; INTEGRAL-INEQUALITIES;
D O I
10.1142/S0219887824400401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to study a generalization of (eta(1),eta(2))-convex functions using the local fractional calculus developed by Yang [Advanced Local Fractional Calculus and its Applications (World Science Publisher, New York, 2012)], namely generalized (eta(1),eta(2))-convex functions. Among other results, we obtain some Fej & eacute;r-type inequalities for this class of functions. As applications, we present some inequalities with generalized probability density functions and generalized special means.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] New Hermite-Hadamard-Fejer type inequalities for (η1, η2)-convex functions via fractional calculus
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    SCIENCEASIA, 2020, 46 (01): : 102 - 108
  • [22] A UNIFIED APPROACH TO SOME INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS ON FRACTAL SETS AND THEIR APPLICATIONS
    Sun, Wenbing
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, Mathematical Research Press (2018):
  • [23] Some generalized fractional calculus operators and their applications in integral equations
    Om P. Agrawal
    Fractional Calculus and Applied Analysis, 2012, 15 : 700 - 711
  • [24] Some generalized fractional calculus operators and their applications in integral equations
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 700 - 711
  • [25] APPLICATIONS OF GENERALIZED FRACTIONAL OPERATORS IN SUBCLASSES OF UNIFORMLY CONVEX FUNCTIONS
    Issa, Ammar S.
    Darus, Maslina
    JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 13 (05): : 21 - 34
  • [26] Generalized fractional calculus with applications to the calculus of variations
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3351 - 3366
  • [27] Some Estimates for Generalized Riemann-Liouville Fractional Integrals of Exponentially Convex Functions and Their Applications
    Rashid, Saima
    Abdeljawad, Thabet
    Jarad, Fahd
    Noor, Muhammad Aslam
    MATHEMATICS, 2019, 7 (09)
  • [28] ON AN INEQUALITY FOR CONVEX FUNCTIONS WITH SOME APPLICATIONS ON FRACTIONAL DERIVATIVES AND FRACTIONAL INTEGRALS
    Iqbal, Sajid
    Krulic, Kristina
    Pecaric, Josip
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (02): : 219 - 230
  • [29] Some Generalized Integral Inequalities for Convex Functions and Applications
    Sarikaya, Mehmet Zeki
    Tunc, Tuba
    Yildiz, Mustafa Kemal
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [30] SOME OSTROWSKI TYPE INEQUALITIES FOR p-CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Thatsatian, Arisa
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (02): : 467 - 478