Automated Pavement Distress Detection Based on Convolutional Neural Network

被引:0
|
作者
Zhang, Jinhe [1 ,2 ]
Sun, Shangyu [1 ,2 ,3 ]
Song, Weidong [1 ,2 ]
Li, Yuxuan [1 ,2 ]
Teng, Qiaoshuang [1 ,2 ]
机构
[1] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Collaborat Innovat Inst Geospatial Informat Serv, Fuxin 123000, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Data mining; Accuracy; Roads; Decoding; Adaptation models; Convolutional neural networks; Surface cracks; Defect detection; Pavement distress detection; convolutional neural network; multiscale feature fusion; attention mechanisms; pavement distress baseline dataset; CRACK DETECTION;
D O I
10.1109/ACCESS.2024.3434569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pavement distress detection is crucial in road health assessment and monitoring. However, there are still some challenges in extracting pavement distress based on deep learning: such as insufficient segmentation, extraction errors and discontinuities. In this paper, we propose DARNet, a network for pavement distress extraction. A Distress Aware Attention Module (DAAM) is proposed to solve the problem of discontinuity in distress extraction due to inaccurate recovery of distress pixels during upsampling. Based on the characteristics of distress morphology, a Refinement Extraction Module (REM) is designed to effectively capture horizontal and vertical pavement damage features by fusing high-level and low-level features, which improves the accuracy of the model in extracting details of pavement damage information. Finally, a Weighted Cross-Entropy Loss function (WCEL) is introduced to assign weights according to the distance of the pixel point to the boundary of the distress, which solves the problem that the traditional cross entropy function treats each pixel point equally. We also propose a set of pavement distress datasets LNTU_RDD_GS, and the experimental results show that DARNet can reach 82.68% mIoU and 90.13% F score in the datasets in this paper, 80.63% mIoU and 88.35% F score in the four public datasets.
引用
收藏
页码:105055 / 105068
页数:14
相关论文
共 50 条
  • [31] Integration of optimized neural network and convolutional neural network for automated brain tumor detection
    Thangarajan, Sathies Kumar
    Chokkalingam, Arun
    SENSOR REVIEW, 2021, 41 (01) : 16 - 34
  • [32] Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples
    Xu, Boqiang
    Liu, Chao
    MEASUREMENT, 2022, 196
  • [33] Automated Detection of Lunar Rockfalls Using a Convolutional Neural Network
    Bickel, Valentin Tertius
    Lanaras, Charis
    Manconi, Andrea
    Loew, Simon
    Mall, Urs
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3501 - 3511
  • [34] Automated Detection of Retinal Fluid Using a Convolutional Neural Network
    Hormel, Tristan
    Wang, Jie
    You, Qisheng
    Huang, David
    Hwang, Thomas
    Jia, Yali
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [35] Automated stomata detection in oil palm with convolutional neural network
    Kwong, Qi Bin
    Wong, Yick Ching
    Lee, Phei Ling
    Sahaini, Muhammad Syafiq
    Kon, Yee Thung
    Kulaveerasingam, Harikrishna
    Appleton, David Ross
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Automated Pain Severity Detection Using Convolutional Neural Network
    Semwal, Ashish
    Londhe, Narendra D.
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 66 - 70
  • [37] Automated stomata detection in oil palm with convolutional neural network
    Qi Bin Kwong
    Yick Ching Wong
    Phei Ling Lee
    Muhammad Syafiq Sahaini
    Yee Thung Kon
    Harikrishna Kulaveerasingam
    David Ross Appleton
    Scientific Reports, 11
  • [38] Pavement distress detection based on improved feature fusion network
    Wu, Peng
    Wu, Jing
    Xie, Luqi
    MEASUREMENT, 2024, 236
  • [39] Convolutional Neural Network based Automated Detection of Mycobacterium Bacillus from Sputum Images
    Swetha, K.
    Sankaragomathi, B.
    Thangamalar, J. Babitha
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 293 - 300
  • [40] Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network
    Zuo, Rui
    Wei, Jing
    Li, Xiaonan
    Li, Chunlin
    Zhao, Cui
    Ren, Zhaohui
    Liang, Ying
    Geng, Xinling
    Jiang, Chenxi
    Yang, Xiaofeng
    Zhang, Xu
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13