A posteriori error estimate of a weak Galerkin finite element method for solving linear elasticity problems

被引:0
|
作者
Liu, Chunmei [1 ]
Xie, Yingying [2 ]
Zhong, Liuqiang [3 ]
Zhou, Liping [1 ]
机构
[1] Hunan Univ Sci & Engn, Coll Sci, Yongzhou 425199, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear elasticity problems; A posteriori error estimate; Weak Galerkin finite element methods; OPTIMAL CONVERGENCE RATE; SCHEME;
D O I
10.1016/j.camwa.2024.07.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a residual-type a posteriori error estimator is proposed and analyzed for a weak Galerkin finite element method for solving linear elasticity problems. The error estimator is proven to be both reliable and efficient, and be used for adaptive refinement. Numerical experiments are presented to illustrate the effectiveness of this error estimator.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [31] A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes
    Li, Hengguang
    Mu, Lin
    Ye, Xiu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (02) : 558 - 578
  • [32] Hybridized weak Galerkin finite element method for linear elasticity problem in mixed form
    Ruishu Wang
    Xiaoshen Wang
    Kai Zhang
    Qian Zhou
    Frontiers of Mathematics in China, 2018, 13 : 1121 - 1140
  • [33] ON L2 ERROR ESTIMATE FOR WEAK GALERKIN FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS
    Gao, Fuzheng
    Mu, Lin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 195 - 204
  • [34] GUARANTEED A POSTERIORI ERROR ESTIMATOR FOR MIXED FINITE ELEMENT METHODS OF LINEAR ELASTICITY WITH WEAK STRESS SYMMETRY
    Kim, Kwang-Yeon
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2364 - 2385
  • [35] A posteriori error estimators for mixed finite element methods in linear elasticity
    Lonsing, M
    Verfürth, R
    NUMERISCHE MATHEMATIK, 2004, 97 (04) : 757 - 778
  • [36] A posteriori error estimators for mixed finite element methods in linear elasticity
    Marco Lonsing
    Rüdiger Verfürth
    Numerische Mathematik, 2004, 97 : 757 - 778
  • [37] Solving linear elasticity benchmark problems via the overset improved element-free Galerkin-finite element method
    Zambrano-Carrillo, Javier A.
    Alvarez-Hostos, Juan C.
    Serebrinsky, Santiago
    Huespe, Alfredo E.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 241
  • [38] A posteriori discontinuous Galerkin error estimator for linear elasticity
    Bird, Robert E.
    Coombs, William M.
    Giani, Stefano
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 344 : 78 - 96
  • [39] A Posteriori Error Estimator for Weak Galerkin Finite Element Method for Stokes Problem Using Diagonalization Techniques
    Zhang, Jiachuan
    Zhang, Ran
    Li, Jingzhi
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (03) : 783 - 811
  • [40] AN A POSTERIORI ERROR ANALYSIS OF MIXED FINITE ELEMENT GALERKIN APPROXIMATIONS TO SECOND ORDER LINEAR PARABOLIC PROBLEMS
    Memon, Sajid
    Nataraj, Neela
    Pani, Amiya Kumar
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1367 - 1393