Object detection algorithm for indoor switchgear components in substations based on improved YOLOv5s

被引:0
|
作者
Changdong, Wu [1 ]
Rui, Liu [1 ]
机构
[1] Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Peoples R China
关键词
indoor switchgear; YOLOv5s; HorBlock; BiFPN; target detection;
D O I
10.1784/insi.2024.66.4.226
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
With the continuous progress of science and technology, electric power equipment detection systems are developing in the direction of artificial intelligence. To achieve good automatic detection results, a high-quality and speedy algorithm is designed to intelligently detect indoor switchgear components in substations. This proposed method can detect the status of components based on image processing technology, which belongs to the field of condition monitoring. In this paper, the targets to be detected include multi-colour buttons or lights and the ammeters or voltmeters of the electrical switchgear. Two hybrid improved algorithms are used to optimise the you only look once v5s (YOLOv5s) network framework for increasing the detection speed and performance. Firstly, deeper feature map extraction is achieved using HorNet recursive gated convolution to replace the original C3 module for more efficient results. Then, a bidirectional feature pyramid network (BiFPN) algorithm is used to achieve the bidirectional propagation of feature information in the feature pyramid. This method can promote better fusion of feature information at different levels and help to convey feature and location information in the image. Finally, the improved YOLOv5s-BH model is used to detect the targets in substations. The experimental results show that the proposed method provides encouraging detection results for indoor switchgear components in substations.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条
  • [31] Improved Defect Detection Algorithm in Power Inspection Based on YOLOv5s
    Wang, Lei
    Hao, Yongting
    Pan, Mingran
    Zhao, Mudong
    Zhang, Yongxin
    Zhang, Mingyu
    Computer Engineering and Applications, 2024, 60 (10) : 256 - 265
  • [32] Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s
    An, Qing
    Xu, Yingjian
    Yu, Jun
    Tang, Miao
    Liu, Tingting
    Xu, Feihong
    SENSORS, 2023, 23 (13)
  • [33] UAV small target detection algorithm based on improved YOLOv5s
    Song, Yaolian
    Wang, Can
    Li, Dayan
    Liu, Xinyi
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (12): : 2417 - 2426
  • [34] YOLOv5s-Fog: An Improved Model Based on YOLOv5s for Object Detection in Foggy Weather Scenarios
    Meng, Xianglin
    Liu, Yi
    Fan, Lili
    Fan, Jingjing
    SENSORS, 2023, 23 (11)
  • [35] HDS-YOLOv5: An improved safety harness hook detection algorithm based on YOLOv5s
    Chen, Mingju
    Lan, Zhongxiao
    Duan, Zhengxu
    Yi, Sihang
    Su, Qin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 15476 - 15495
  • [36] A lightweight ship target detection model based on improved YOLOv5s algorithm
    Zheng, Yuanzhou
    Zhang, Yuanfeng
    Qian, Long
    Zhang, Xinzhu
    Diao, Shitong
    Liu, Xinyu
    Cao, Jingxin
    Huang, Haichao
    PLOS ONE, 2023, 18 (04):
  • [37] UAV small target detection algorithm based on an improved YOLOv5s model
    Cao, Shihai
    Wang, Ting
    Li, Tao
    Mao, Zehui
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [38] Research on Insulator Defect Detection Method Based on Improved YOLOv5s Algorithm
    Zhao, Jingyi
    Zhou, Chun
    Wu, Zixuan
    Zheng, Weili
    Yan, Xu
    Niu, Changzhi
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 96 - 100
  • [39] Research on Helmet Wearing Detection of Improved YOLOv5s Algorithm
    Qi, Zezheng
    Xu, Yinxia
    Computer Engineering and Applications, 2023, 59 (14) : 176 - 183
  • [40] Defect detection algorithm of improved YOLOv5s solar cell
    Peng, Xueling
    Lin, Shanling
    Lin, Zhixian
    Guo, Tailiang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (02) : 237 - 247