Object detection algorithm for indoor switchgear components in substations based on improved YOLOv5s

被引:0
|
作者
Changdong, Wu [1 ]
Rui, Liu [1 ]
机构
[1] Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Peoples R China
关键词
indoor switchgear; YOLOv5s; HorBlock; BiFPN; target detection;
D O I
10.1784/insi.2024.66.4.226
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
With the continuous progress of science and technology, electric power equipment detection systems are developing in the direction of artificial intelligence. To achieve good automatic detection results, a high-quality and speedy algorithm is designed to intelligently detect indoor switchgear components in substations. This proposed method can detect the status of components based on image processing technology, which belongs to the field of condition monitoring. In this paper, the targets to be detected include multi-colour buttons or lights and the ammeters or voltmeters of the electrical switchgear. Two hybrid improved algorithms are used to optimise the you only look once v5s (YOLOv5s) network framework for increasing the detection speed and performance. Firstly, deeper feature map extraction is achieved using HorNet recursive gated convolution to replace the original C3 module for more efficient results. Then, a bidirectional feature pyramid network (BiFPN) algorithm is used to achieve the bidirectional propagation of feature information in the feature pyramid. This method can promote better fusion of feature information at different levels and help to convey feature and location information in the image. Finally, the improved YOLOv5s-BH model is used to detect the targets in substations. The experimental results show that the proposed method provides encouraging detection results for indoor switchgear components in substations.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条
  • [1] Road object detection algorithm based on improved YOLOv5s
    Zhou Qing
    Tan Gong-quan
    Yin Song-lin
    Li Yi-nian
    Wei Dan-qin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (05) : 680 - 690
  • [2] Research on Lightweight Improved Algorithm for Indoor Target Detection Based on YOLOv5s
    Niu, Xinyu
    Mao, Pengjun
    Duan, Yuntao
    Lou, Xiaoheng
    Computer Engineering and Applications, 60 (03):
  • [3] An Improved YOLOv5s Algorithm for Object Detection with an Attention Mechanism
    Jiang, Tingyao
    Li, Cheng
    Yang, Ming
    Wang, Zilong
    ELECTRONICS, 2022, 11 (16)
  • [4] Lightweight aerial image object detection algorithm based on improved YOLOv5s
    Deng, Lixia
    Bi, Lingyun
    Li, Hongquan
    Chen, Haonan
    Duan, Xuehu
    Lou, Haitong
    Zhang, Hongyu
    Bi, Jingxue
    Liu, Haiying
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Lightweight aerial image object detection algorithm based on improved YOLOv5s
    Lixia Deng
    Lingyun Bi
    Hongquan Li
    Haonan Chen
    Xuehu Duan
    Haitong Lou
    Hongyu Zhang
    Jingxue Bi
    Haiying Liu
    Scientific Reports, 13
  • [6] YOlOv5s-ACE: Forest Fire Object Detection Algorithm Based on Improved YOLOv5s
    Wang, Jianan
    Wang, Changzhong
    Ding, Weiping
    Li, Cheng
    FIRE TECHNOLOGY, 2024, : 4023 - 4043
  • [7] Improved Pedestrian Detection Algorithm Based on YOLOv5s
    Li, Zhihua
    Zhang, Yuanbiao
    Wang, Chao
    Tan, Guopeng
    Yan, Yahui
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (04) : 768 - 775
  • [8] Improved YOLOv5s Small Object Detection Algorithm in UAv view
    Wu, Mingjie
    Yun, Lijun
    Chen, Zaiqing
    Zhong, Tianze
    Computer Engineering and Applications, 2024, 60 (02) : 191 - 199
  • [9] Infrared ship detection algorithm based on improved YOLOv5s
    Li H.
    Kong F.
    Lin Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (08): : 2415 - 2422
  • [10] Underwater trash detection algorithm based on improved YOLOv5s
    Wu, ChunMing
    Sun, YiQian
    Wang, TiaoJun
    Liu, YaLi
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2022, 19 (05) : 911 - 920