A Variable Selection Method for High-Dimensional Survival Data

被引:1
|
作者
Giordano, Francesco [1 ]
Milito, Sara [1 ]
Restaino, Marialuisa [1 ]
机构
[1] Univ Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
关键词
Variable selection; High-dimension; Survival data;
D O I
10.1007/978-3-030-99638-3_49
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Survival data with high-dimensional predictors are regularly collected in many studies. Models with a very large number of covariates are both infeasible to fit and likely to incur low predictability due to overfitting. The selection of significant variables plays a crucial role in estimating models. Even if several approaches that identify variables in presence of censored data are available in literature, there is not unanimous consensus on which method outperforms the others. Nonetheless, it is possible to exploit the advantages of methods to get the final set of covariates as good as possible. Therefore, we propose a method that combines different variable selection procedures by using the subsampling technique, for identifying as relevant those covariates that are selected most frequently by the different variable selectors on subsampled data. By a simulation study, we evaluate the performance of the proposed procedure and compare it with other techniques.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 50 条
  • [41] Variable selection for high-dimensional incomplete data using horseshoe estimation with data augmentation
    Zhang, Yunxi
    Kim, Soeun
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (12) : 4235 - 4251
  • [42] A model-free variable screening method for optimal treatment regimes with high-dimensional survival data
    Yang, Cheng-Han
    Cheng, Yu-Jen
    BIOMETRIKA, 2024, 111 (04) : 1369 - 1386
  • [43] Model Selection for High-Dimensional Data
    Owrang, Arash
    Jansson, Magnus
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 606 - 609
  • [44] Feature selection for high-dimensional data
    Bolón-Canedo V.
    Sánchez-Maroño N.
    Alonso-Betanzos A.
    Progress in Artificial Intelligence, 2016, 5 (2) : 65 - 75
  • [45] Feature selection for high-dimensional data
    Destrero A.
    Mosci S.
    De Mol C.
    Verri A.
    Odone F.
    Computational Management Science, 2009, 6 (1) : 25 - 40
  • [46] Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis
    Yang, Aijun
    Jiang, Xuejun
    Shu, Lianjie
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 127 - 143
  • [47] Controlled variable selection in Weibull mixture cure models for high-dimensional data
    Fu, Han
    Nicolet, Deedra
    Mrozek, Krzysztof
    Stone, Richard M.
    Eisfeld, Ann-Kathrin
    Byrd, John C.
    Archer, Kellie J.
    STATISTICS IN MEDICINE, 2022, 41 (22) : 4340 - 4366
  • [48] Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis
    Aijun Yang
    Xuejun Jiang
    Lianjie Shu
    Jinguan Lin
    Computational Statistics, 2017, 32 : 127 - 143
  • [49] The EAS approach to variable selection for multivariate response data in high-dimensional settings
    Koner, Salil
    Williams, Jonathan P.
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 1947 - 1995
  • [50] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Aijun Yang
    Yunxian Li
    Niansheng Tang
    Jinguan Lin
    Computational Statistics, 2015, 30 : 399 - 418