Satellite retrievals of water quality for diverse inland waters from Sentinel-2 images: An example from Zhejiang Province, China

被引:3
|
作者
Zhao, Yaqi [1 ]
He, Xianqiang [2 ,3 ]
Pan, Shuping [4 ]
Bai, Yan [2 ,5 ]
Wang, Difeng [2 ]
Li, Teng [2 ]
Gong, Fang [2 ]
Zhang, Xuan [2 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[3] Donghai Lab, Zhoushan 316021, Peoples R China
[4] Zhejiang Ecol & Environm Monitoring Ctr, Hangzhou 310012, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Water quality; Inland water; Remote sensing; Sentinel-2; Machine learning; CLIMATE; RIVER; LAKE; VALIDATION; RESPONSES; IMPACTS; INDEX;
D O I
10.1016/j.jag.2024.104048
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Due to its advantages of high spatiotemporal resolution, long-term stable observation, and historical retrospective data, satellite remote sensing has extensive application in the dynamic monitoring of water quality in coastal and inland waters. However, constructing generic satellite inversion models for water quality indicators, especially non-optically active parameters such as nutrients, remains challenging due to the varying pollution sources in different inland waters. This study aims to address this challenge from a data-driven perspective. Based on Sentinel-2 satellite images and in situ data from 311 automatic monitoring stations in Zhejiang Province, China, a large volume of matchups between satellite-derived water spectra and in situ water quality parameter concentrations were constructed, including the permanganate index (CODMn, N=8760, from 0.08 to 9.88 mg/L), total nitrogen (TN, N=7434, from 0.01 to 9.30 mg/L), total phosphorus (TP, N=8845, from 0.001 to 0.991 mg/L), ammonia nitrogen (NH3-N, N=8642, from 0.001 to 1.980 mg/L) and water turbidity (TUB, N=7913, from 0.1 to 1994 NTU). Satellite retrieval models for the five water quality parameters were constructed utilizing the extreme gradient boosting tree algorithm (XGBoost), which can be applied to diverse inland waters. The models showed robust performance on the additional independent dataset, with correlation coefficients (r) of 0.74, 0.79, 0.84, 0.72, and 0.87, and root mean square errors (RMSEs) of 0.73 mg/L, 0.56 mg/L, 0.18 mg/L, 0.24 mg/L, and 0.29 NTU for CODMn, TN, TP, NH3-N, and TUB, respectively. Comparisons between satellite-retrieved and in situ values showed good consistency in both spatial and temporal distributions. By applying these models to inland waters in Zhejiang Province, the monthly distributions of major rivers and reservoirs with a 10 m resolution for the five water quality parameters were obtained. The patterns of the five water quality parameters across the rivers typically indicated elevated values in the downstream regions and diminished values in the upstream areas, except for those of the Yongjiang River and Cao'e River. Compared to rivers, reservoirs had good water quality. However, for some water quality parameters, the temporal variations in the average values over the whole reservoir and the values at specific sites had opposite trends. Our research provides a practical reference for the construction of satellite retrieval models for determining the water quality parameters of inland waters, as well as robust technical support for dynamic remote sensing surveillance of inland water quality.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Seasonal dynamics of snow ablation on selected glaciers in central Spitsbergen derived from Sentinel-2 satellite images
    Kavan, Jan
    Haagmans, Vincent
    JOURNAL OF GLACIOLOGY, 2021, 67 (265) : 961 - 966
  • [42] Snow Coverage Mapping by Learning from Sentinel-2 Satellite Multispectral Images via Machine Learning Algorithms
    Wang, Yucheng
    Su, Jinya
    Zhai, Xiaojun
    Meng, Fanlin
    Liu, Cunjia
    REMOTE SENSING, 2022, 14 (03)
  • [43] DenseResUNet: An Architecture to Assess Water-Stressed Sugarcane Crops from Sentinel-2 Satellite Imagery
    Virnodkar, Shyamal S.
    Pachghare, Vinod K.
    Patil, Virupakshagouda C.
    Jha, Sunil Kumar
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1131 - 1139
  • [44] Monitoring the Water Quality Distribution Characteristics in the Huaihe River Basin Based on the Sentinel-2 Satellite
    Shi, Xuanshuo
    Qiu, Zhongfeng
    Hu, Yunjian
    Zhao, Dongzhi
    Zhao, Aibo
    Lin, Hui
    Zhan, Yating
    Wang, Yu
    Zhang, Yuanzhi
    WATER, 2024, 16 (06)
  • [45] Automatic Extraction of Sargassum Features From Sentinel-2 MSI Images
    Wang, Mengqiu
    Hu, Chuanmin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2579 - 2597
  • [46] Combination of Sentinel-2 Satellite Images and Meteorological Data for Crop Water Requirements Estimation in Intensive Agriculture
    El Hachimi, Jaouad
    El Harti, Abderrazak
    Lhissou, Rachid
    Ouzemou, Jamal-Eddine
    Chakouri, Mohcine
    Jellouli, Amine
    AGRICULTURE-BASEL, 2022, 12 (08):
  • [47] Monitoring water transparency of a hypertrophic lake (the Albufera of Valencia) using multitemporal Sentinel-2 satellite images
    Soria-Perpinya, Xavier
    Patricia Urrego, Esther
    Pereira-Sandoval, Marcela
    Ruiz-Verdu, Antonio
    Soria, Juan M.
    Delegido, Jesus
    Vicente, Eduardo
    Moreno, Jose
    LIMNETICA, 2020, 39 (01): : 373 - 386
  • [48] Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands
    Harmel, Tristan
    Chami, Malik
    Tormos, Thierry
    Reynaud, Nathalie
    Danis, Pierre-Alain
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 308 - 321
  • [49] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Tian, Shang
    Guo, Hongwei
    Xu, Wang
    Zhu, Xiaotong
    Wang, Bo
    Zeng, Qinghuai
    Mai, Youquan
    Huang, Jinhui Jeanne
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (07) : 18617 - 18630
  • [50] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Shang Tian
    Hongwei Guo
    Wang Xu
    Xiaotong Zhu
    Bo Wang
    Qinghuai Zeng
    Youquan Mai
    Jinhui Jeanne Huang
    Environmental Science and Pollution Research, 2023, 30 : 18617 - 18630