Runge-Kutta convolution quadrature based on Gauss methods

被引:0
|
作者
Banjai, Lehel [1 ]
Ferrari, Matteo [2 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Sch Math & Comp Sci, Edinburgh EH144AS, Scotland
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, Vienna 1090, Austria
基金
奥地利科学基金会;
关键词
65R20; 65L06; 65M15; EQUATIONS;
D O I
10.1007/s00211-024-01429-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An error analysis of Runge-Kutta convolution quadrature based on Gauss methods applied to hyperbolic operators is given. Order reduction is observed, with the order of convergence depending heavily on the parity of the number of stages, a more favourable situation arising for the odd cases than the even ones. An exception is observed when the associated kernel exhibits exponential decay. In this case, for the 2-stage Gauss method full order is obtained. For particular situations the order of convergence is higher than for Radau IIA or Lobatto IIIC methods when using the same number of odd stages. We investigate an application to transient acoustic scattering where, for certain scattering obstacles, the favourable situation occurs in the important case of the exterior Dirichlet-to-Neumann map. Numerical experiments and comparisons illustrate the performance of the method.
引用
收藏
页码:1719 / 1750
页数:32
相关论文
共 50 条
  • [41] Numerical Solution of Evolutionary Integral Equations with Completely Monotonic Kernel by Runge-Kutta Convolution Quadrature
    Xu, Da
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (01) : 105 - 142
  • [42] On global error control in nested implicit Runge-Kutta methods of the Gauss type
    Kulikov G.Y.
    Kuznetsov E.B.
    Khrustaleva E.Y.
    Numerical Analysis and Applications, 2011, 4 (3) : 199 - 209
  • [43] On superconvergence of Runge–Kutta convolution quadrature for the wave equation
    Jens Markus Melenk
    Alexander Rieder
    Numerische Mathematik, 2021, 147 : 157 - 188
  • [44] Fast Runge-Kutta methods for nonlinear convolution systems of volterra integral equations
    Capobianco, G.
    Conte, D.
    Del Prete, I.
    Russo, E.
    BIT NUMERICAL MATHEMATICS, 2007, 47 (02) : 259 - 275
  • [45] Runge-Kutta methods of special form
    Ixaru, L. Gr.
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [46] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2014, 65 : 421 - 445
  • [47] FAMILIES OF IMBEDDED RUNGE-KUTTA METHODS
    VERNER, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (05) : 857 - 875
  • [48] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [49] Volume preservation by Runge-Kutta methods
    Bader, Philipp
    McLaren, David I.
    Quispel, G. R. W.
    Webb, Marcus
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 123 - 137
  • [50] Embedded additive Runge-Kutta methods
    Sayfy, A
    Aburub, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (08) : 945 - 953