Wavelet Transform Associated with Quadratic-Phase Hankel Transform

被引:0
|
作者
Roy, Chandra [2 ]
Kumar, Tanuj [1 ,3 ]
Prasad, Akhilesh [4 ]
Jha, Govind Kumar [5 ]
机构
[1] VIT AP Univ, Sch Adv Sci, Dept Math, Amaravati, Andhra Pradesh, India
[2] Vinoba Bhave Univ, Univ Dept Math, Hazaribagh, India
[3] UPES, Dept Math, Dehra Dun, India
[4] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, India
[5] Markham Coll Commerce, Dept Math, Hazaribagh, India
来源
关键词
Wavelet transform; Quadratic-phase transform; Convolution; FRACTIONALIZATION; CONVOLUTION; PAIR;
D O I
10.1007/s40009-024-01423-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we construct a new wavelet transform in the framework of the quadratic-phase Hankel transform. Further, we establish the Parseval's relation and reconstruction formula of continuous quadratic-phase Hankel wavelet transform.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [31] Convolution based quadratic-phase Stockwell transform: theory and uncertainty relations
    Dar, Aamir H.
    Bhat, M. Younus
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 20117 - 20147
  • [32] Convolution based quadratic-phase Stockwell transform: theory and uncertainty relations
    Aamir H. Dar
    M. Younus Bhat
    Multimedia Tools and Applications, 2024, 83 : 20117 - 20147
  • [33] Octonion quadratic-phase Fourier transform: inequalities, uncertainty principles, and examples
    Kumar, Manish
    Bhawna
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [34] Pseudo-differential operators associated with a pair of quadratic-phase Hankel transformations
    Roy, Chandra
    Kumar, Tanuj
    Prasad, Akhilesh
    Jha, Govind Kumar
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2025, 16 (01)
  • [35] Quadratic-Phase Wave-Packet Transform in L2(R)
    Srivastava, Hari M.
    Shah, Firdous A.
    Lone, Waseem Z.
    SYMMETRY-BASEL, 2022, 14 (10):
  • [36] Localization Operators and Scalogram Associated with the Deformed Hankel Wavelet Transform
    Mejjaoli, Hatem
    Trimeche, Khalifa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [37] Localization Operators and Scalogram Associated with the Deformed Hankel Wavelet Transform
    Hatem Mejjaoli
    Khalifa Trimèche
    Mediterranean Journal of Mathematics, 2023, 20
  • [38] Abelian Theorems for the Wavelet Transform in Terms of the Fractional Hankel Transform
    Dey, A.
    Mahato, K.
    Singh, P.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (02) : 177 - 186
  • [39] Editorial Expression of Concern to: The fractional wavelet transform associated with the second kind of fractional Hankel transform
    Prasad, Akhilesh
    Mahato, Kanailal
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1473 - 1474
  • [40] Editorial Expression of Concern to: The fractional wavelet transform associated with the second kind of fractional Hankel transform
    Akhilesh Prasad
    Kanailal Mahato
    The Journal of Analysis, 2021, 29 : 1473 - 1474