Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation

被引:0
|
作者
Abdollahipour, Armin [1 ]
Sayyaadi, Hoseyn [1 ]
机构
[1] KN Toosi Univ Technol, Fac Mech Engn, Lab Optimizat Thermal Syst Installat, Energy Div, POB 19395-1999,15-19 Pardis St,Mollasadra Ave,Vana, Tehran 1999143344, Iran
关键词
Conceptual design; Electrochemical heat engine; Electric power generation; Heat to power; PEM fuel cell; Solid oxide electrolyzer; Thermal heat recovery; 3-DIMENSIONAL COMPUTATIONAL ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; TECHNOECONOMIC ANALYSIS; TRANSPORT PHENOMENA; HYDROGEN-PRODUCTION; STEAM ELECTROLYZER; HEAT; SYSTEM; EFFICIENT; FLUID;
D O I
10.1016/j.heliyon.2024.e34631
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to generate clean electricity from thermal energy, a hybrid electrochemical system is conceptually developed by coupling the proton exchange membrane fuel cell (PEMFC) and solid oxide electrolyzer cell (SOEC). For evaluating the proposed hybrid system, firstly, the two subsystems are modeled numerically and then they are merged into an integrated SOEC-PEMFC system. Moreover, the SOEC-PEMFC is analytically modeled for further evaluation. The effects of important operational parameters are examined. The outcomes show that when the SOEC operating temperature increases from 823 to 1273 K, the efficiency increases from 18.7 % to 38 % and the net output power improves about 36 % while cost per unit of power of hybrid system decreases about 80 %. Furthermore, by increasing the PEMFC operating temperature from 323 to 348 K, the system net output power and efficiency increase about 16.7 % and 10 %, respectively, whilst the cost per unit of electricity decreases about 19 %. In addition by increasing operating pressure of system, the net output power and efficiency are also improved. The proposed system has maximum output power density of 3.9 kW.m(-2) and maximum efficiency of 38 %. In addition, the SOEC-PEMFC system is compared with the previously studied proton exchange membrane electrolyzer cell-proton exchange membrane fuel cell (PEMEC-PEMFC) system. In comparison with the previous PEMEC-PEMFC system, the present system 's cost per unit of power and efficiency are about 16 % and 17 % higher, respectively; while the output power density is about double that of the PEMEC-PEMFC system. Generally, because hydrogen-powered systems offer reliable operation from an economic and energetic perspective, the SOEC-PEMFC system represents a promising technological solution to the clean energy demands.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Design and performance evaluation of power system for unmanned ship based on proton exchange membrane fuel cell
    Wu, Jiawen
    Cai, Shanshan
    Guan, Yin
    Li, Song
    Tu, Zhengkai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 730 - 741
  • [32] Economic feasibility of solid oxide fuel cell (SOFC) for power generation in Iran
    Fakour, Amir
    Behbahani-Nia, Ali
    Torabi, Farshad
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2018, 13 (03) : 149 - 157
  • [33] Bipolar Plate Design Assessment: Proton Exchange Membrane Fuel Cell and Water Electrolyzer
    Sarjuni, C. T. Aisyah
    Shahril, Ahmad Adam Danial
    Low, Hock Chin
    Lim, Bee Huah
    FUEL CELLS, 2024, 24 (03)
  • [34] Application of graphene oxide in proton exchange membrane for fuel cell
    Fu, Fengyan
    Zhang, Jie
    Cheng, Jingquan
    Zhang, Sufang
    Zhang, Yan
    Fan, Jing
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (05): : 2233 - 2241
  • [35] Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy
    Han, Bo
    Steen, M., III
    Mo, Jingke
    Zhang, Feng-Yuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (22) : 7006 - 7016
  • [36] A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies
    Liu, Chao-Yang
    Sung, Chia-Chi
    JOURNAL OF POWER SOURCES, 2012, 220 : 348 - 353
  • [37] Energy, exergy and economic analysis of an integrated solid oxide fuel cell - gas turbine - organic Rankine power generation system
    Eveloy, Valerie
    Karunkeyoon, Wirinya
    Rodgers, Peter
    Al Alili, Ali
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (31) : 13843 - 13858
  • [38] Performance evaluation of a blocked regulated lateral release channel for proton exchange membrane fuel cell based on entropy generation analysis
    Li, Zhengyan
    Xian, Lei
    Chen, Yanyu
    Chen, Lei
    Tao, Wen-Quan
    ENERGY CONVERSION AND MANAGEMENT, 2024, 301
  • [39] Effect of Catalyst Ink Properties on the Performance of Proton Exchange Membrane Fuel Cell and Water Electrolyzer: A Mini Review
    Choi, Won-Jong
    Kang, Inku
    Yu, Duk Man
    Yoon, Sang Jun
    So, Soonyong
    Oh, Keun-Hwan
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [40] Thermodynamic analysis of a Proton Exchange Membrane fuel cell
    Ozgur, Tayfun
    Yakaryilmaz, Ali Cem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (38) : 18007 - 18013