A novel fusion-based deep learning approach with PSO and explainable AI for batteries State of Charge estimation in Electric Vehicles

被引:0
|
作者
Jafari, Sadiqa [1 ]
Kim, Jisoo [2 ]
Byun, Yung-Cheol [3 ]
机构
[1] Jeju Natl Univ, Inst Informat Sci & Technol, Dept Elect Engn, Jeju 63243, South Korea
[2] Jeju Natl Univ, Fac Software Artificial Intelligence major, Dept Comp Engn, Coll Engn, Jeju 63243, South Korea
[3] Jeju Natl Univ, Inst Informat Sci & Technol, Dept Comp Engn, Major Elect Engn, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
State of Charge; Battery; Deep learning; Battery management systems; Explainable Artificial Intelligence; Convolutional LSTM; Particle Swarm Optimization; Predictive modeling; LITHIUM-ION BATTERIES; OF-CHARGE; NEURAL-NETWORK; SOC ESTIMATION; KALMAN FILTER; ONLINE STATE; MODEL; PACKS; MANAGEMENT; HEALTH;
D O I
10.1016/j.egyr.2024.09.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the main purposes of the Battery Management System (BMS) is to estimate the State of Charge (SoC) of Lithium-ion batteries (LIBs). In this study, we propose a novel fusion model combining Convolutional Neural Networks (CNNs), Long Short-term Memory networks (LSTMs), and Convolutional LSTM (ConvLSTM) architectures to efficiently capture spatio-temporal patterns in battery data efficiently, hence improving the estimate accuracy of SoC. Particle Swarm Optimization (PSO) is employed to optimize hyperparameters and enhance the model's accuracy. The fusion model outperforms the separate CNN, LSTM, and ConvLSTM models regarding performance metrics. Specifically, the fusion model with PSO achieved a Mean Absolute Error (MAE) of 0.01, Root Mean Square Error (RMSE) of 0.094, and a R-2 score of 99% according to experimental assessments. The results confirm the model's effectiveness in estimating SoC, indicating its potential to enhance the dependability and efficiency of BMS. Furthermore, Explainable Artificial Intelligence (XAI) was employed to elucidate the battery SoC model's decision-making process and identify the key elements contributing to the estimate process.
引用
收藏
页码:3364 / 3385
页数:22
相关论文
共 50 条
  • [41] Accurate state of charge prediction for lithium-ion batteries in electric vehicles using deep learning and dimensionality reduction
    Ramprabu Jayaraman
    Rani Thottungal
    Electrical Engineering, 2024, 106 : 2175 - 2195
  • [42] A Fusion-Based Method of State-of-Charge Online Estimation for Lithium-Ion Batteries Under Low Capacity Conditions
    Zhou, Nan
    Liang, Hong
    Cui, Jing
    Chen, Zeyu
    Fang, Zhiyuan
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [43] State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickshon N. T.
    Hannan, Mahammad A.
    Lipu, Molla S. Hossain
    Sahari, Khairul S. M.
    Ker, Pin Jern
    Muttaqi, Kashem M.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) : 5565 - 5574
  • [44] State-of-Charge Estimation of Li-ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickson N. T.
    Hannan, M. A.
    Lipu, M. S. Hossain
    Sahari, K. S. M.
    Ker, P. J.
    Muttaqi, K. M.
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [45] State of charge evaluation of battery in electric vehicles based on data-driven and model fusion approach
    Xiang Yun
    Xin Zhang
    Xingming Fan
    Electrical Engineering, 2023, 105 : 3307 - 3318
  • [46] State of charge evaluation of battery in electric vehicles based on data-driven and model fusion approach
    Yun, Xiang
    Zhang, Xin
    Fan, Xingming
    ELECTRICAL ENGINEERING, 2023, 105 (5) : 3307 - 3318
  • [47] A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Feng, Guojin
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew
    ENERGY REPORTS, 2021, 7 : 5141 - 5161
  • [48] AI on Wheels: Bibliometric Approach to Mapping of Research on Machine Learning and Deep Learning in Electric Vehicles
    Domenteanu, Adrian
    Cotfas, Liviu-Adrian
    Diaconu, Paul
    Tudor, George-Aurelian
    Delcea, Camelia
    ELECTRONICS, 2025, 14 (02):
  • [49] Enhancing vessel arrival time prediction: A fusion-based deep learning approach
    Abdi, Asad
    Amrit, Chintan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [50] A novel approach for improving the performance of deep learning-based state of charge estimation of lithium-ion batteries: Choosy SoC Estimator (ChoSoCE)
    Korkmaz, Mehmet
    ENERGY, 2024, 294