Multi-modal data clustering using deep learning: A systematic review

被引:0
|
作者
Raya, Sura [1 ]
Orabi, Mariam [1 ]
Afyouni, Imad [1 ]
Al Aghbari, Zaher [1 ]
机构
[1] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates
关键词
Multi-modal data; Clustering algorithms; Deep learning; Review article; FRAMEWORK; INFORMATION; TRENDS;
D O I
10.1016/j.neucom.2024.128348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-modal clustering represents a formidable challenge in the domain of unsupervised learning. The objective of multi-modal clustering is to categorize data collected from diverse modalities, such as audio, visual, and textual sources, into distinct clusters. These clustering techniques operate by extracting shared features across modalities in an unsupervised manner, where the identified common features exhibit high correlations within real-world objects. Recognizing the importance of perceiving the correlated nature of these features is vital for enhancing clustering accuracy in multi-modal settings. This survey explores Deep Learning (DL) techniques applied to multi-modal clustering, encompassing methodologies such as Convolutional Neural Networks (CNN), Autoencoders (AE), Recurrent Neural Networks (RNN), and Graph Convolutional Networks (GCN). Notably, this survey represents the first attempt to investigate DL techniques specifically for multi-modal clustering. The survey presents a novel taxonomy for DL-based multi-modal clustering, conducts a comparative analysis of various multi-modal clustering approaches, and deliberates on the datasets employed in the evaluation process. Additionally, the survey identifies research gaps within the realm of multi-modal clustering, offering insights into potential future avenues for research.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Multi-Modal and Multi-Scale Oral Diadochokinesis Analysis using Deep Learning
    Wang, Yang Yang
    Gaol, Ke
    Hamad, Ali
    McCarthy, Brianna
    Kloepper, Ashley M.
    Lever, Teresa E.
    Bunyak, Filiz
    2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,
  • [42] A Massive Multi-Modal Perception Data Classification Method Using Deep Learning Based on Internet of Things
    Jiang, Linli
    Wu, Chunmei
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2020, 27 (02) : 226 - 233
  • [43] A Clustering Algorithm for Multi-Modal Heterogeneous Big Data With Abnormal Data
    Yan, An
    Wang, Wei
    Ren, Yi
    Geng, HongWei
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [44] Multi-Modal Song Mood Detection with Deep Learning
    Pyrovolakis, Konstantinos
    Tzouveli, Paraskevi
    Stamou, Giorgos
    SENSORS, 2022, 22 (03)
  • [45] A Multi-Modal Deep Learning Approach for Emotion Recognition
    Shahzad, H. M.
    Bhatti, Sohail Masood
    Jaffar, Arfan
    Rashid, Muhammad
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (02): : 1561 - 1570
  • [46] Memory based fusion for multi-modal deep learning
    Priyasad, Darshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    INFORMATION FUSION, 2021, 67 : 136 - 146
  • [47] Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review
    Saidi, Souad
    Idbraim, Soufiane
    Karmoude, Younes
    Masse, Antoine
    Arbelo, Manuel
    REMOTE SENSING, 2024, 16 (20)
  • [48] A multi-modal heterogeneous data mining algorithm using federated learning
    Wei, Xianyong
    JOURNAL OF ENGINEERING-JOE, 2021, 2021 (08): : 458 - 466
  • [49] Graph Embedding Contrastive Multi-Modal Representation Learning for Clustering
    Xia, Wei
    Wang, Tianxiu
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1170 - 1183
  • [50] A multi-modal heterogeneous data mining algorithm using federated learning
    Wei, Xianyong
    Journal of Engineering, 2021, 2021 (08): : 458 - 466