A Comparative Analysis of Large Language Models for Code Documentation Generation

被引:1
|
作者
Dvivedi, Shubhang Shekhar [1 ]
Vijay, Vyshnav [1 ]
Pujari, Sai Leela Rahul [1 ]
Lodh, Shoumik [1 ]
Kumar, Dhruv [1 ]
机构
[1] IIIT Delhi, New Delhi, India
关键词
Code documentation; Large Language Models;
D O I
10.1145/3664646.3664765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and StarChat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring StarChat, all LLMs consistently outperform the original documentation. Notably, closedsource models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/sourceavailable LLMs, namely Llama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration by a significant margin, followed by Llama2, Bard, with GPT-3.5 and StarChat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [21] Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models
    Sarsa, Sami
    Denny, Paul
    Hellas, Arto
    Leinonen, Juho
    PROCEEDINGS OF THE 2022 ACM CONFERENCE ON INTERNATIONAL COMPUTING EDUCATION RESEARCH, ICER 2022, VOL. 1, 2023, : 27 - 43
  • [22] Hot or Cold? Adaptive Temperature Sampling for Code Generation with Large Language Models
    Zhu, Yuqi
    Li, Jia
    Li, Ge
    Zhao, YunFei
    Li, Jia
    Jin, Zhi
    Mei, Hong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 437 - 445
  • [23] Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
    Liu, Jiawei
    Xia, Chunqiu Steven
    Wang, Yuyao
    Zhang, Lingming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] L2CEval: Evaluating Language-to-Code Generation Capabilities of Large Language Models
    Ni, Ansong
    Yin, Pengcheng
    Zhao, Yilun
    Riddell, Martin
    Feng, Troy
    Shen, Rui
    Yin, Stephen
    Liu, Ye
    Yavuz, Semih
    Xiong, Caiming
    Joty, Shafiq
    Zhou, Yingbo
    Radev, Dragomir
    Cohan, Arman
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 1311 - 1329
  • [25] Requirements Verification Through the Analysis of Source Code by Large Language Models
    Couder, Juan Ortiz
    Gomez, Dawson
    Ochoa, Omar
    SOUTHEASTCON 2024, 2024, : 75 - 80
  • [26] Large language models for reducing clinicians’ documentation burden
    Kirk Roberts
    Nature Medicine, 2024, 30 : 942 - 943
  • [27] Large language models for reducing clinicians' documentation burden
    Roberts, Kirk
    NATURE MEDICINE, 2024, 30 (04) : 942 - 943
  • [28] JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
    Cao, Jialun
    Chen, Zhiyong
    Wu, Jiarong
    Cheung, Shing-Chi
    Xu, Chang
    Proceedings - 2024 39th ACM/IEEE International Conference on Automated Software Engineering, ASE 2024, : 870 - 882
  • [29] Enhancing Large Language Models-Based Code Generation by Leveraging Genetic Improvement
    Pinna, Giovanni
    Ravalico, Damiano
    Rovito, Luigi
    Manzoni, Luca
    De Lorenzo, Andrea
    GENETIC PROGRAMMING, EUROGP 2024, 2024, 14631 : 108 - 124
  • [30] Can ChatGPT Support Developers? An Empirical Evaluation of Large Language Models for Code Generation
    Jin, Kailun
    Wang, Chung-Yu
    Hung Viet Pham
    Hemmati, Hadi
    2024 IEEE/ACM 21ST INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR, 2024, : 167 - 171