A Comparative Analysis of Large Language Models for Code Documentation Generation

被引:1
|
作者
Dvivedi, Shubhang Shekhar [1 ]
Vijay, Vyshnav [1 ]
Pujari, Sai Leela Rahul [1 ]
Lodh, Shoumik [1 ]
Kumar, Dhruv [1 ]
机构
[1] IIIT Delhi, New Delhi, India
关键词
Code documentation; Large Language Models;
D O I
10.1145/3664646.3664765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and StarChat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring StarChat, all LLMs consistently outperform the original documentation. Notably, closedsource models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/sourceavailable LLMs, namely Llama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration by a significant margin, followed by Llama2, Bard, with GPT-3.5 and StarChat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [1] Comparative Analysis of Large Language Models in Source Code Analysis
    Erdoğan, Hüseyin
    Turan, Nezihe Turhan
    Onan, Aytuğ
    Lecture Notes in Networks and Systems, 2024, 1088 LNNS : 185 - 192
  • [2] Comparative Analysis of Large Language Models in Source Code Analysis
    Erdogan, Huseyin
    Turan, Nezihe Turhan
    Onan, Aytug
    INTELLIGENT AND FUZZY SYSTEMS, INFUS 2024 CONFERENCE, VOL 1, 2024, 1088 : 185 - 192
  • [3] BioCoder: a benchmark for bioinformatics code generation with large language models
    Tang, Xiangru
    Qian, Bill
    Gao, Rick
    Chen, Jiakang
    Chen, Xinyun
    Gerstein, Mark B.
    BIOINFORMATICS, 2024, 40 : i266 - i276
  • [4] Knowledge-Aware Code Generation with Large Language Models
    Huang, Tao
    Sun, Zhihong
    Jin, Zhi
    Li, Ge
    Lyu, Chen
    PROCEEDINGS 2024 32ND IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION, ICPC 2024, 2024, : 52 - 63
  • [5] Self-Planning Code Generation with Large Language Models
    Jiang, Xue
    Dong, Yihong
    Wang, Lecheng
    Fang, Zheng
    Shang, Qiwei
    Li, Ge
    Jin, Zhi
    Jiao, Wenpin
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2024, 33 (07)
  • [6] Framework for evaluating code generation ability of large language models
    Yeo, Sangyeop
    Ma, Yu-Seung
    Kim, Sang Cheol
    Jun, Hyungkook
    Kim, Taeho
    ETRI JOURNAL, 2024, 46 (01) : 106 - 117
  • [7] CodeT5+: Open Code Large Language Models for Code Understanding and Generation
    Wang, Yue
    Le, Hung
    Gotmare, Akhilesh Deepak
    Bui, Nghi D. Q.
    Li, Junnan
    Hoi, Steven C. H.
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 1069 - 1088
  • [8] GREEN-CODE: Optimizing Energy Efficiency in Large Language Models for Code Generation
    Ilager, Shashikant
    Briem, Lukas Florian
    Brandic, Ivona
    arXiv,
  • [9] ARCHCODE: Incorporating Software Requirements in Code Generation with Large Language Models
    Han, Hojae
    Kim, Jaejin
    Yoo, Jaeseok
    Lee, Youngwon
    Hwang, Seung-won
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 13520 - 13552
  • [10] Automatic Unit Test Code Generation Using Large Language Models
    Ocal, Akdeniz Kutay
    Keskinoz, Mehmet
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,