Copper metallization of carbon fiber-reinforced epoxy polymer composites by surface activation and electrodeposition

被引:0
|
作者
Basheer, Bashida [1 ]
Akhil, M. G. [1 ,2 ]
Rajan, T. P. D. [1 ,2 ]
Agarwal, Pankaj [3 ]
Saikrishna, V. Vijay [3 ]
机构
[1] CSIR Natl Inst Interdisciplinary Sci & Technol, Mat Sci & Technol Div, Thiruvananthapuram 695019, Kerala, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Indian Space Res Org ISRO, Vikram Sarabhai Space Ctr VSSC, Thiruvananthapuram 695013, India
来源
关键词
Epoxy-carbon fiber composite; Electrodeposition; Surface activation; Sn/Ag activation; Electrical conductivity; Adhesion; COLD-SPRAY; DEPOSITION; COATINGS; CORROSION; ADHESION; MECHANISMS; STRENGTH; HARDNESS; GLASS;
D O I
10.1016/j.surfcoat.2024.131016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The application of polymer metallization in lightweight and high-strength materials for the sporting goods, automotive, aerospace and construction sectors has attracted considerable attention. The present study aims to deposit a thin, uniform copper (Cu) layer on an epoxy-carbon fiber (epoxy-Cf) composite material for lightweight, high-frequency radio reflector applications (Ka-Band and higher frequencies) required in space missions. In this work, a surface-activated electroplating technique in which the surface of the substrate is activated with a Sn/Ag system, followed by conventional electroplating is studied. Surface activation deposits layers of conducting metal ions on the surface of the epoxy-Cf composite, which significantly improves the electrical conductivity of the composite surface. The subsequent electrodeposition takes place from a CuSO4 solution with a pH value of 4 at three different current density values of 0.05 A/dm2, 0.5 A/dm2 and 1 A/dm2. The presence and abundance of metallic Cu over epoxy-Cf composite were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The morphology and elemental composition of the coating were characterized by scanning electron microscopy equipped with energy dispersive spectroscopy. With current density and coating thickness, morphology of the deposit changed from cauliflower-like to spherical along with grain refinement. Microhardness test shows a hardness of 330 HV and the pull-off adhesion test gave a bond strength of 1.69 MPa for 27.56 mu m thick copper deposit. A major challenge encountered during the deposition of Cu is the oxidation of the metal followed by immediate tarnishing. This issue has been effectively addressed by employing benzotriazole solution as a protective agent.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation
    Kumar, HG
    Singh, RP
    Nakamura, T
    JOURNAL OF COMPOSITE MATERIALS, 2002, 36 (24) : 2713 - 2733
  • [22] Femtosecond laser micromachining of carbon fiber-reinforced epoxy matrix composites
    Sharma, Sahendra P.
    Vilar, R.
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 84 : 1568 - 1579
  • [23] Healable Carbon Fiber-Reinforced Epoxy/Cyclic Olefin Copolymer Composites
    Mahmood, Haroon
    Dorigato, Andrea
    Pegoretti, Alessandro
    MATERIALS, 2020, 13 (09)
  • [25] Radiation shielding properties of the doped carbon fiber-reinforced epoxy composites
    Erdem, Serkan
    Bulut, Fatih
    Ozcan, Mehmet Erbil
    Ogul, Hasan
    Yildiz, Yunus Onur
    RADIATION PHYSICS AND CHEMISTRY, 2023, 208
  • [26] Recent Developments in Graphene Oxide/Epoxy Carbon Fiber-Reinforced Composites
    Keyte, John
    Pancholi, Ketan
    Njuguna, James
    FRONTIERS IN MATERIALS, 2019, 6
  • [27] Multifunctional Characteristics of Glass Fiber-Reinforced Epoxy Polymer Composites with Multiwalled Carbon Nanotube Buckypaper Interlayer
    Ribeiro, Bruno
    Rojas Corredor, Jefersson Alexander
    Costa, Michelle Leali
    Botelho, Edson Cocchieri
    Rezende, Mirabel Cerqueira
    POLYMER ENGINEERING AND SCIENCE, 2020, 60 (04): : 740 - 751
  • [28] Combined effects of multi-walled carbon nanotubes and lignin on polymer fiber-reinforced epoxy composites
    Goulis, Panagiotis
    Kartsonakis, Ioannis A.
    Mpalias, Konstantinos
    Charitidis, Costas
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 218 : 18 - 27
  • [29] MATRIX FRACTOGRAPHY OF FIBER-REINFORCED EPOXY COMPOSITES
    PURSLOW, D
    COMPOSITES, 1986, 17 (04): : 289 - 303
  • [30] Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol
    Ma, Lichun
    Meng, Linghui
    Wu, Guangshun
    Wang, Yuwei
    Zhao, Min
    Zhang, Chunhua
    Huang, Yudong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 114 : 64 - 71