共 50 条
Enhancing the High-Rate Capability and Cycling Stability of LiMn0.6Fe0.4PO4/C Cathode Materials for Lithium-Ion Batteries by Na+ Doping
被引:0
|作者:
Xu, Jiahao
[1
,2
]
Hou, Kangwei
[1
,2
]
Li, Xiaolin
[1
,2
]
Bian, Yuhan
[1
,2
]
Wang, Yaping
[1
,2
,3
]
Wang, Li
[1
,2
,3
]
Liang, Guangchuan
[1
,2
,3
]
机构:
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Key Lab Special Funct Mat Ecol Environm & Informat, Tianjin 300130, Peoples R China
[3] Hebei Univ Technol, Key Lab New Type Funct Mat Hebei Prov, Tianjin 300130, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
lithium-ion battery;
cathode material;
LiMn0.6Fe0.4PO4;
Na+ doping;
electrochemical performance;
ELECTROCHEMICAL PROPERTIES;
CO;
PERFORMANCE;
STORAGE;
D O I:
10.1021/acsaem.4c01659
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The practical applications of lithium manganese iron phosphate (LMFP) are severely circumvented by the inferior electronic conductivity and electrochemical reaction kinetics. In this work, a Na+-doping method is adopted to prepare Li1-xNaxMn0.6Fe0.4PO4/C (x = 0, 0.01, 0.02, 0.03) materials by spray drying combined with the carbothermal reduction method. It is found that appropriate Na+ doping enhances the crystallinity, reduces Li-Fe antisite defects, decreases the primary particle size, and homogenizes the size distribution of the LMFP material. Moreover, the inferior rate and cycling performance of LMFP are mainly ascribed to the slower Li+ diffusion kinetics of Mn redox. A combination of experiments and DFT calculations shows that Na+ doping can increase the Li-O bond length, widen the Li+ diffusion channel, and decrease Li+ diffusion energy barriers, which can accelerate the Li+ diffusion rate and Mn redox kinetics, thereby improving the high-rate capability and cycling stability of Na+-doped samples. Besides, doped Na+ can not only act as pillars to stabilize the structure but also reduce Mn3+ content and Mn-Mn interactions to alleviate the Jahn-Teller effect, which also helps to improve the cycling performance of Na+-doped samples, wherein the Li0.98Na0.02Mn0.6Fe0.4PO4/C sample exhibits optimal rate and cycling performances. Its specific discharge capacity is 125.0 mAh g(-1) at 5 C, and the capacity retention rate reaches 96.7% after 100 cycles at 1 C. Therefore, the Na+-doping strategy is believed to be an effective modification means to ameliorate the high-rate and cycling capabilities of olivine-based cathode materials.
引用
收藏
页码:8694 / 8704
页数:11
相关论文