Student Models for a Risky Asset with Dependence: Option Pricing and Greeks

被引:1
|
作者
Leonenko, Nikolai N. [1 ]
Liu, Anqi [1 ]
Shchestyuk, Nataliya [2 ,3 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
[2] Orebro Univ, Sch Business, Orebro, Sweden
[3] Natl Univ Kyiv, Mohyla Acad, Dept Math, Kiev, Ukraine
基金
巴西圣保罗研究基金会;
关键词
option pricing; fractal activity time; student processes; dependence structure; supOU processes; delta hedging; ACTIVITY TIME PROCESS; WEAK-CONVERGENCE; SIMULATION;
D O I
10.17713/ajs.v54i1.1952
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose several new models in finance known as the Fractal Activity Time Geometric Brownian Motion (FATGBM) models with Student marginals. We summarize four models that construct stochastic processes of underlying prices with short-range and long-range dependencies. We derive solutions of option Greeks and compare with those in the Black-Scholes model. We analyse performance of delta hedging strategy using simulated time series data and verify that hedging errors are biased particularly for long-range dependence cases. We also apply underlying model calibration on S&P 500 index (SPX) and the U.S./Euro rate, and implement delta hedging on SPX options.
引用
收藏
页码:138 / 165
页数:28
相关论文
共 50 条
  • [21] A Generalized Hyperbolic model for a risky asset with dependence
    Finlay, Richard
    Seneta, Eugene
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (12) : 2164 - 2169
  • [22] On Comparing Asset Pricing Models
    Chib, Siddhartha
    Zeng, Xiaming
    Zhao, Lingxiao
    JOURNAL OF FINANCE, 2020, 75 (01): : 551 - 577
  • [23] Diagnostics for asset pricing models
    He, Ai
    Zhou, Guofu
    FINANCIAL MANAGEMENT, 2023, 52 (04) : 617 - 642
  • [24] Comparing Asset Pricing Models
    Barillas, Francisco
    Shanken, Jay
    JOURNAL OF FINANCE, 2018, 73 (02): : 715 - 754
  • [25] Autoencoder asset pricing models
    Gu, Shihao
    Kelly, Bryan
    Xiu, Dacheng
    JOURNAL OF ECONOMETRICS, 2021, 222 (01) : 429 - 450
  • [26] Valuation of a nonexpiring American option on the maximum of a risky and a riskless asset
    Khizhnyak K.V.
    Moscow University Computational Mathematics and Cybernetics, 2011, 35 (3) : 124 - 132
  • [27] ANALYTIC APPROXIMATIONS FOR MULTI-ASSET OPTION PRICING
    Alexander, Carol
    Venkatramanan, Aanand
    MATHEMATICAL FINANCE, 2012, 22 (04) : 667 - 689
  • [28] EQUILIBRIUM ASSET AND OPTION PRICING UNDER JUMP DIFFUSION
    Zhang, Jin E.
    Zhao, Huimin
    Chang, Eric C.
    MATHEMATICAL FINANCE, 2012, 22 (03) : 538 - 568
  • [29] An Improved Real Option Pricing Model of Internet Asset
    Gao, Xi-Rong
    Yang, Jian
    Dong, Wen-xuan
    INTERNATIONAL JOURNAL OF ASIAN BUSINESS AND INFORMATION MANAGEMENT, 2018, 9 (02) : 15 - 28
  • [30] Option pricing for stable and infinitely divisible asset returns
    Mittnik, S
    Rachev, ST
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (10-12) : 93 - 104