Optical Tweezers Assembled Nanodiamond Quantum Sensors

被引:1
|
作者
Stewart, Adam [1 ]
Zhu, Ying [2 ,3 ]
Liu, Yiting [2 ]
Simpson, David A. [4 ]
Reece, Peter J. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Univ Technol Sydney, Fac Engn & IT, Sch Biomed Engn, Sydney, NSW 2007, Australia
[3] Univ New South Wales, Sch Clin Med, Sydney, NSW 2052, Australia
[4] Univ Melbourne, Dept Phys, Parkville, NSW 3052, Australia
关键词
Nanodiamonds; Optical Tweezers; Self-assembly; Optically Detected Magnetic Resonance; Nanoscale Sensing; Quantum Sensing; ELECTRON-SPIN-RESONANCE; NANOPARTICLES;
D O I
10.1021/acs.nanolett.4c03195
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we show that gradient force optical tweezers can be used to mediate the self-assembly of nanodiamonds into superstructures, which can serve as optically trapped nanoscale quantum probes with superior magnetic resonance sensing capabilities. Enhanced fluorescence rates from nitrogen-vacancy NV- defect centers enable rapid acquisition of optically detected magnetic resonance (ODMR), and shape-induced forces can improve both positioning accuracy and orientation control. The use of confocal imaging can isolate the signal from individual nanodiamonds within the assembly, thereby retaining the desirable properties of a single crystal probe. The improvements afforded by the use nanodiamond assemblies has the potential to resolve dynamic changes through, for example, real-time monitoring of the ODMR contrast.
引用
收藏
页码:12188 / 12195
页数:8
相关论文
共 50 条
  • [21] Optical tweezers
    Phys Educ, 3 (179):
  • [22] OPTICAL TWEEZERS
    AMOS, B
    GILL, P
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1995, 6 (02) : 248 - 248
  • [23] Quantum Dots Based Optical Sensors
    Lobnik, Aleksandra
    Urek, Spela Korent
    Turel, Matejka
    DIFFUSION IN SOLIDS AND LIQUIDS VII, 2012, 326-328 : 682 - +
  • [24] Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing
    Petrini, Giulia
    Tomagra, Giulia
    Bernardi, Ettore
    Moreva, Ekaterina
    Traina, Paolo
    Marcantoni, Andrea
    Picollo, Federico
    Kvakova, Klaudia
    Cigler, Petr
    Degiovanni, Ivo Pietro
    Carabelli, Valentina
    Genovese, Marco
    ADVANCED SCIENCE, 2022, 9 (28)
  • [25] OPTICAL TWEEZERS Imaging lets optical tweezers 'feel the force'
    Overton, Gail
    LASER FOCUS WORLD, 2009, 45 (08): : 17 - 18
  • [26] Trapped Ion Quantum Computing Using Optical Tweezers and Electric Fields
    Mazzanti, M.
    Schussler, R. X.
    Espinoza, J. D. Arias
    Wu, Z.
    Gerritsma, R.
    Safavi-Naini, A.
    PHYSICAL REVIEW LETTERS, 2021, 127 (26)
  • [27] Trapped ions quantum logic gate with optical tweezers and the Magnus effect
    Mazzanti, M.
    Gerritsma, R.
    Spreeuw, R. J. C.
    Safavi-Naini, A.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [28] Optical doughnut for optical tweezers
    Zhang, DW
    Yuan, XC
    OPTICS LETTERS, 2003, 28 (09) : 740 - 742
  • [29] Self-assembled nanostructured optical fiber temperature sensors
    Zhao, W
    Claus, RO
    Cooper, K
    Liu, Y
    Arregui, FJ
    Matias, IR
    14TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2000, 4185 : 21 - 24
  • [30] Optical tweezers in a dusty universeModeling optical forces for space tweezers applications
    P. Polimeno
    A. Magazzù
    M. A. Iatì
    R. Saija
    L. Folco
    D. Bronte Ciriza
    M. G. Donato
    A. Foti
    P. G. Gucciardi
    A. Saidi
    C. Cecchi-Pestellini
    A. Jimenez Escobar
    E. Ammannito
    G. Sindoni
    I. Bertini
    V. Della Corte
    L. Inno
    A. Ciaravella
    A. Rotundi
    O. M. Maragò
    The European Physical Journal Plus, 136