Fuzzy Leibniz Ideals and Fuzzy Leibniz Subalgebras

被引:0
|
作者
Mansuroglu, Nil [1 ]
机构
[1] Kirsehir Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkiye
关键词
Fuzzy Leibniz subalgebra; Fuzzy Leibniz ideal; Interval-valued fuzzy Leibniz ideal; LIE IDEALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with applying the concept of fuzzy sets to Leibniz algebras in order to introduce and to study the descriptions of fuzzy Leibniz subalgebras and fuzzy Leibniz ideals. More concretely, our main goal is to introduce the notion of interval-valued fuzzy Leibniz ideals in Leibniz algebras. Additionally, we present some of their properties.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 50 条
  • [21] On Leibniz Algebras Whose Subalgebras Are Either Ideals or Self-Idealizing Subalgebras (vol 73, pg 944, 2021)
    Kurdachenko, L. A.
    Pypka, O. O.
    Subbotin, I. Ya.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (08) : 1339 - 1339
  • [22] L-fuzzy ideals and L-fuzzy subalgebras of Novikov algebras
    Zhou, Xin
    Chen, Liangyun
    Chang, Yuan
    OPEN MATHEMATICS, 2019, 17 : 1538 - 1546
  • [23] Bipolar Fuzzy Subalgebras and Bipolar Fuzzy Ideals of BCK/BCI-Algebras
    Lee, Kyoung Ja
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (03) : 361 - 373
  • [24] INTUITIONISTIC HESITANT FUZZY SUBALGEBRAS AND IDEALS OF HILBERT ALGEBRAS
    Iampan, Aiyared
    Subasini, Ramasamy
    Meenakshi, Ponnusamy Maragatha
    Rajesh, Neelamegarajan
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (06): : 1919 - 1931
  • [25] CARTAN SUBALGEBRAS OF LEIBNIZ n-ALGEBRAS
    Albeverio, S.
    Ayupov, Sh. A.
    Omirov, B. A.
    Turdibaev, R. M.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2080 - 2096
  • [26] Second-maximal subalgebras of Leibniz algebras
    Bosko-Dunbar, Lindsey
    Dunbar, Jonathan D.
    Hird, J. T.
    Rovira, Kristen Stagg
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) : 3965 - 3971
  • [27] Leibniz algebras with absolute maximal Lie subalgebras
    Biyogmam, G. R.
    Tcheka, C.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 52 - 65
  • [28] Leibniz algebras whose subideals are ideals
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya.
    Yashchuk, Viktoriia S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [29] On Leibniz Algebras Whose Centralizers Are Ideals
    Das, Pratulananda
    Saha, Ripan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1555 - 1571
  • [30] Some antipodes of ideals in Leibniz algebras
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya
    Yashchuk, Viktoriia S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (06)